Effect of dietary energy content pre- and post-calving on production and blood metabolites of dairy cows during early lactation

2009 ◽  
Vol 2009 ◽  
pp. 11-11
Author(s):  
R A Law ◽  
F J Young ◽  
D C Patterson ◽  
D J Kilpatrick ◽  
A R G Wylie ◽  
...  

The increase in milk production potential of the modern high yielding dairy cow has resulted in excessive and prolonged negative energy balance (NEB) during early lactation. This predisposes the cow to an increased risk of metabolic disorders, poor fertility and subsequently increased culling rates. Historically, much emphasis has been placed on post partum nutrition in an attempt to suppress these ill effects. However, contemporary theories advocate improved dry cow nutrition to properly prepare the cow for energy demands of early lactation. Friggens et al. (2004) stated that priming the liver during the dry period would allow the cow to better deal with metabolic processes in the post partum period. In this experiment, dairy cows were offered different dietary energy levels pre-and post-calving in an attempt to quantify the effects on energy parameters during the same time periods.

2019 ◽  
Vol 3 (2) ◽  
pp. 607-619
Author(s):  
Novi Mayasari ◽  
Erminio Trevisi ◽  
Annarita Ferrari ◽  
Bas Kemp ◽  
Henk K Parmentier ◽  
...  

Abstract Earlier studies indicated that the inflammatory status of dairy cows in early lactation could not be fully explained by the negative energy balance (NEB) at that moment. The objective of the present study was to determine relationships between inflammatory biomarkers and oxidative stress with uterine health in dairy cows after different dry period lengths. Holstein–Friesian dairy cows were assigned to one of three dry period lengths (0-, 30-, or 60-d) and one of two early lactation rations (glucogenic or lipogenic ration). Cows were fed either a glucogenic or lipogenic ration from 10-d before the expected calving date. Part of the cows which were planned for a 0-d dry period dried themselves off and were attributed to a new group (0 → 30-d dry period), which resulted in total in four dry period groups. Blood was collected (N = 110 cows) in weeks −3, −2, −1, 1, 2, and 4 relative to calving to determine biomarkers for inflammation, liver function, and oxidative stress. Uterine health status (UHS) was monitored by scoring vaginal discharge (VD) based on a 4-point scoring system (0, 1, 2, or 3) in weeks 2 and 3 after calving. Cows were classified as having a healthy uterine environment (HU, VD score = 0 or 1 in both weeks 2 and 3), nonrecovering uterine environment (NRU, VD score = 2 or 3 in week 3), or a recovering uterine environment (RU, VD score = 2 or 3 in week 2 and VD score= 0 or 1 in week 3). Independent of dry period length, cows with NRU had higher plasma haptoglobin (P = 0.05) and lower paraoxonase levels (P < 0.01) in the first 4 weeks after calving and lower liver functionality index (P < 0.01) compared with cows with HU. Cows with NRU had lower plasma albumin (P = 0.02) and creatinine (P = 0.02) compared with cows with a RU, but not compared with cows with HU. Independent of UHS, cows with a 0 → 30-d dry period had higher bilirubin levels compared with cows with 0-, 30-, or 60-d dry period (P < 0.01). Cows with RU and fed a lipogenic ration had higher levels of albumin in plasma compared with cows with NRU and fed a lipogenic ration (P < 0.01). In conclusion, uterine health was related to biomarkers for inflammation (haptoglobin and albumin) and paraoxonase in dairy cows in early lactation. Cows which were planned for a 0-d dry period, but dried themselves off (0 → 30-d dry period group) had higher bilirubin levels, which was possibly related to a more severe NEB in these cows. Inflammatory biomarkers in dairy cows in early lactation were related to uterine health in this period.


2011 ◽  
Vol 78 (4) ◽  
pp. 479-488 ◽  
Author(s):  
Josef Gross ◽  
Hendrika A van Dorland ◽  
Rupert M Bruckmaier ◽  
Frieder J Schwarz

Milk fatty acid (FA) profile is a dynamic pattern influenced by lactational stage, energy balance and dietary composition. In the first part of this study, effects of the energy balance during the proceeding lactation [weeks 1–21 post partum (pp)] on milk FA profile of 30 dairy cows were evaluated under a constant feeding regimen. In the second part, effects of a negative energy balance (NEB) induced by feed restriction on milk FA profile were studied in 40 multiparous dairy cows (20 feed-restricted and 20 control). Feed restriction (energy balance of −63 MJ NEL/d, restriction of 49 % of energy requirements) lasted 3 weeks starting at around 100 days in milk. Milk FA profile changed markedly from week 1 pp up to week 12 pp and remained unchanged thereafter. The proportion of saturated FA (predominantly 10:0, 12:0, 14:0 and 16:0) increased from week 1 pp up to week 12 pp, whereas monounsaturated FA, predominantly the proportion of 18:1,9c decreased as NEB in early lactation became less severe. During the induced NEB, milk FA profile showed a similarly directed pattern as during the NEB in early lactation, although changes were less marked for most FA. Milk FA composition changed rapidly within one week after initiation of feed restriction and tended to adjust to the initial composition despite maintenance of a high NEB. C18:1,9c was increased significantly during the induced NEB indicating mobilization of a considerable amount of adipose tissue. Besides 18:1,9c, changes in saturated FA, monounsaturated FA, de-novo synthesized and preformed FA (sum of FA >C16) reflected energy status in dairy cows and indicated the NEB in early lactation as well as the induced NEB by feed restriction.


2018 ◽  
Vol 101 (5) ◽  
pp. 4570-4585 ◽  
Author(s):  
R.J. van Hoeij ◽  
T.J.G.M. Lam ◽  
R.M. Bruckmaier ◽  
J. Dijkstra ◽  
G.J. Remmelink ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 842
Author(s):  
Sudipa Maity ◽  
Ivana Rubić ◽  
Josipa Kuleš ◽  
Anita Horvatić ◽  
Dražen Đuričić ◽  
...  

Dairy cows can suffer from a negative energy balance (NEB) during their transition from the dry period to early lactation, which can increase the risk of postpartum diseases such as clinical ketosis, mastitis, and fatty liver. Zeolite clinoptilolite (CPL), due to its ion-exchange property, has often been used to treat NEB in animals. However, limited information is available on the dynamics of global metabolomics and proteomic profiles in serum that could provide a better understanding of the associated altered biological pathways in response to CPL. Thus, in the present study, a total 64 serum samples were collected from 8 control and 8 CPL-treated cows at different time points in the prepartum and postpartum stages. Labelled proteomics and untargeted metabolomics resulted in identification of 64 and 21 differentially expressed proteins and metabolites, respectively, which appear to play key roles in restoring energy balance (EB) after CPL supplementation. Joint pathway and interaction analysis revealed cross-talks among valproic acid, leucic acid, glycerol, fibronectin, and kinninogen-1, which could be responsible for restoring NEB. By using a global proteomics and metabolomics strategy, the present study concluded that CPL supplementation could lower NEB in just a few weeks, and explained the possible underlying pathways employed by CPL.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 342 ◽  
Author(s):  
Jennifer Meyer ◽  
Susanne Ursula Daniels ◽  
Sandra Grindler ◽  
Johanna Tröscher-Mußotter ◽  
Mohamadtaher Alaedin ◽  
...  

Dairy cows are metabolically challenged during the transition period. Furthermore, the process of parturition represents an energy-consuming process. The degree of negative energy balance and recovery from calving also depends on the efficiency of mitochondrial energy generation. At this point, L-carnitine plays an important role for the transfer of fatty acids to the site of their mitochondrial utilisation. A control (n = 30) and an L-carnitine group (n = 29, 25 g rumen-protected L-carnitine per cow and day) were created and blood samples were taken from day 42 ante partum (ap) until day 110 post-partum (pp) to clarify the impact of L-carnitine supplementation on dairy cows, especially during the transition period and early puerperium. Blood and clinical parameters were recorded in high resolution from 0.5 h to 72 h pp. L-carnitine-supplemented cows had higher amounts of milk fat in early lactation and higher triacylglyceride concentrations in plasma ap, indicating increased efficiency of fat oxidation. However, neither recovery from calving nor energy balance and lipomobilisation were influenced by L-carnitine.


2006 ◽  
Vol 46 (7) ◽  
pp. 957 ◽  
Author(s):  
C. R. Stockdale

This review considers the research that has been conducted recently on reducing the length of the dry period of dairy cows, with particular emphasis on the effects of eliminating the dry period altogether. Milk yield in the subsequent lactation is reduced by up to 25%, but this loss is offset to some degree by the milk produced when cows would otherwise be dry. The lower subsequent milk yield in cows continuously milked is most likely to be a consequence of changes in the mammary gland during late gestation rather than insufficient feed or body condition to maintain milk synthesis. Shortening or eliminating the dry period may result in a lower incidence of metabolic problems post-partum, and a reduced negative energy balance in early lactation due to the maintenance of dietary intake while milk yields and body condition loss are reduced. The reductions in both body condition loss and negative energy balance may have a beneficial influence on reproductive performance. However, it is concluded that more research, particularly with cows that graze pasture during lactation, together with an economic appraisal, is needed before it could be recommended that Australian dairy farmers change their current dry period practices, particularly if continuous milking was to be considered.


2015 ◽  
Vol 98 (2) ◽  
pp. 1033-1045 ◽  
Author(s):  
J. Chen ◽  
J.J. Gross ◽  
H.A. van Dorland ◽  
G.J. Remmelink ◽  
R.M. Bruckmaier ◽  
...  

Author(s):  
V.M. Russo ◽  
W.J. Wales ◽  
B.J. Leury ◽  
M.C. Hannah ◽  
E. Kennedy

The diet of dairy cows in Ireland traditionally changes abruptly from predominantly pasture silage before calving to grazed perennial ryegrass immediately after calving. This potentially leads to problems with adaptation of microbes in the rumen with consequences of reduced intake and ultimately lower milk production. This experiment aimed to determine if introducing first-lactation dairy cows to perennial ryegrass herbage in the final weeks of pregnancy, thus eliminating a major dietary change at calving, could improve the adaptation process, potentially increasing dry matter intake (DMI) and milk production in early lactation. Three weeks prior to their expected calving date, 14 spring calving dairy cows were assigned to one of two treatments (n = 7): pasture silage pre-partum and perennial ryegrass herbage post-partum, or perennial ryegrass herbage both pre- and post-partum. Treatment diets were fed for 11 (±7) d pre-partum and for 14 (±0) d post-partum. For both treatments, DMI increased post-partum, but there was no difference between treatments, pre- or post-partum (5.9 and 8.8 kg DM/cow per day, respectively). There were no differences in milk yield or composition between the treatments. Body condition score declined following parturition but there were no differences between treatments. Plasma non-esterified fatty acids, glucose and β-hydroxybutyrate were also unaffected by treatment but did indicate a state of negative energy balance in early lactation. The results of this experiment suggest that pre-partum adaptation to perennial ryegrass herbage would not benefit milk production in first-lactation dairy cows in early lactation in Irish dairy farms employing this system.


Sign in / Sign up

Export Citation Format

Share Document