Compact filtering power dividers with wide upper stopband

2019 ◽  
Vol 11 (08) ◽  
pp. 765-773
Author(s):  
Gaoya Dong ◽  
Weimin Wang ◽  
Yuanan Liu

AbstractA series of compact filtering power dividers (FPDs) with simple layouts are proposed based on coupling topology. The structure of the presented FPD1 is composed of three resonators and one isolating resistor. These FPDs can be designed based on coupling matrix filter theory. A half-wave transmission line is employed in FPD2 to introduce a transmission zero (TZ) locating at 1.27f0. The FPD3 is designed by replacing quarter-wave transmission lines in FPD2 with quarter-wave coupled lines, which will produce a TZ locating at 1.96 f0 and extend upper stopband bandwidth. For verification, three FPDs centered at 2.45 GHz are fabricated and measured. All measured results are in good agreement with the full-wave simulation results.

2014 ◽  
Vol 6 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Yung-Wei Chen ◽  
Hung-Wei Wu ◽  
Yan-Kuin Su

In this paper, a new multi-layered triple-passband bandpass filter using embedded and stub-loaded stepped impedance resonators (SIRs) is proposed. The filter is designed to have triple-passband at 1.8, 2.4, and 3.5 GHz. The 1st and 2nd passbands (1.8/2.4 GHz) are simultaneously generated by controlling the impedance and length ratios of the embedded SIRs (on top layer). The 3rd passband (3.5 GHz) is generated by using the stub-loaded SIR (on bottom layer). Using the embedded SIR, the even modes can be tuned within very wide frequency range and without affecting the odd modes. Therefore, the design of multi-band filters with very close passbands can be easily achieved and having a high isolation between the passbands. The filter can provide the multi-path propagation to enhance the frequency response and achieving the compact circuit size. The measured results are in good agreement with the full-wave electromagnetic simulation results.


2013 ◽  
Vol 437 ◽  
pp. 1066-1072 ◽  
Author(s):  
Wei Min Wang ◽  
Yuan An Liu

A novel coupled-line circuit configuration is proposed to design small-size dual-band Wilkinson power dividers. This proposed power divider consists of three sections of coupled lines and two isolation resistors. The analytical design theory is given and the electrical parameters analysis is provided. Six numerical examples are presented to demonstrate the flexible dual-band applications. To avoid a negative isolation resistor, a practical power divider operating at 1GHz and 2.2GHz with two positive-value resistors is designed. The calculated and full-wave simulated results verify our proposed idea. Keywords: Coupled-line, dual-band, power divider.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1835
Author(s):  
Heng Wang ◽  
Qibo Mao

A new type of deep subwavelength acoustic metamaterial (AMM) absorber with 100% ventilation is presented in this study. The proposed ventilation absorber consists of coiled-up half-wave resonators (HWRs) and quarter-wave resonators (QWRs). First, the sound absorption and sound transmission performances for absorbers were analyzed considering the thermal viscosity dissipation. Then, the prototype with ten HWRs and three QWRs composed of acrylic plates was manufactured based on the theoretical model. The acoustic performance of the absorber was tested in an air-filled acoustic impedance tube to determine the sound absorption and transmission loss performances. Good agreement was found between the measured and theoretically predicted results. The experimental results show that the proposed ventilation AMM absorber is able to achieve sound absorption in a range between 330 Hz and 460 Hz with a thickness of only 32 mm (about 3% of the wavelength in the air). Furthermore, the sound transmission loss can achieve 17 dB from 330 Hz to 460 Hz. The main advantage of the proposed absorber is that it can be completely ventilated in duct noise control.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Haiwen Liu ◽  
Jiuhuai Lei ◽  
Jing Wan ◽  
Yan Wang ◽  
Feng Yang ◽  
...  

A miniaturized dual-mode bandpass filter (BPF) with elliptic function response using slot spurline is designed in this paper. The slot spurline can not only splits the degenerate modes but also determine the type of filter characteristic (Chebyshev or elliptic). To miniaturize the resonator, four sagittate stubs are proposed. For demonstration purpose, a BPF operating at 5.75 GHz for WLAN application was designed, fabricated, and measured. The measured results are in good agreement with the full-wave simulation results.


Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 245-252 ◽  
Author(s):  
Maryam Kazemi ◽  
Saeedeh Lotfi ◽  
Hesam Siahkamari ◽  
Mahmood Mohammadpanah

AbstractAn ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 173
Author(s):  
Bo-Yoon Yoo ◽  
Jae-Hyun Park ◽  
Jong-Ryul Yang

A quasi-circulator is proposed by using an asymmetric coupler with high isolation between the transmitting (Tx) and receiving (Rx) ports. The proposed quasi-circulator consists of quarter-wave transmission lines, which have unbalanced characteristic impedances and the terminated port, which is purposely unmatched with the reference impedance in the coupler. The port compensates for the asymmetric impedances of the coupler using the proposed design parameter. Because of its asymmetric structure and the usage of the unmatched port, the proposed circulator can be accurately designed to have high Tx–Rx isolation without increasing the signal losses in the Tx and Rx paths at the operating frequency. The proposed quasi-circulators show isolation improvements of 9.07 dB at 2.45 GHz and 7.95 dB at 24.125 GHz compared with conventional circulators using the symmetric couplers. The characteristic improvement of the proposed quasi-circulator was demonstrated by the increase of the detectable range of the 2.45 GHz Doppler radar sensor with the quasi-circulator.


2014 ◽  
Vol 6 (3-4) ◽  
pp. 287-295 ◽  
Author(s):  
Hanseung Lee ◽  
Chung-Tse Michael Wu ◽  
Tatsuo Itoh

Several types of multiplexers based on isolation circuits have been introduced and investigated. Combining method of two filtering circuits (CMTC) is one way to make multiplexers based on isolation circuits. This method fits well for designing contiguous channel triplexers. A triplexer based on CMTC consists of a conventional transmission line (TL) connected to a diplexer and a composite right/left-handed (CRLH) TL connected to a filter. The triplexer based on CMTC has two significant advantages. One is that it is not necessary to modify the design of a stand-alone filter and diplexer and there is freedom in the choice of filtering circuits. In addition, a designer does not need to perform three-dimensional full-wave optimization, because of a simple and straightforward design concept. In this paper, a triplexer prototype having 1, 1.125, and 1.25 GHz center frequencies, is designed and fabricated. The measured results show good agreement with the simulation results.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Khair Al Shamaileh ◽  
Abdullah Qaroot ◽  
Nihad Dib ◽  
Abdelfattah Sheta ◽  
Majeed A. Alkanhal

An ultra-wideband (UWB) modified 3-way Bagley polygon power divider (BPD) that operates over a frequency range of 2–16 GHz is presented. To achieve the UWB operation, the conventional quarter-wave transformers in the BPD are substituted by two tapered line transformers. For verification purposes, the proposed divider is simulated, fabricated, and measured. The agreement between the full-wave simulation results and the measurement ones validates the design procedure.


2016 ◽  
Vol 9 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Bukuru Denis ◽  
Kaijun Song ◽  
Fan Zhang

A compact dual-band bandpass filter using stub-loaded stepped impedance resonator (SLSIR) with cross-slots is presented. The symmetric SLSIR is analyzed using even- and odd-mode techniques. Design equations are derived and they are used to guide the design of the circuits. Two passbands can be easily tuned by cross-slots and open stubs. Transmission zeros among each passbands are created, resulting in high isolation and frequency selectivity. An experimental circuit is fabricated and evaluated to validate the design concept. The fabricated filter is compact with 19.76 × 12.7 mm2. The measurement results are in good agreement with the full-wave simulation results.


2021 ◽  
Author(s):  
Srikumar Sandeep ◽  
Albin Gasiewski ◽  
Shao Ying Huang ◽  
Andrew F Peterson

<div>This work validates cylindrical IE-GSTC by applying it to physical metasurfaces, i.e. metasurfaces defined by material properties and dimensions rather than by susceptibility tensor components. Previously reported IE-GSTC which was formulated for zero thickness GSTC discontinuity is extended to handle finite thickness of physical metasurfaces. A simple analytical approach is used to extract the bianisotropic susceptibility tensor of concentric, multilayered, magneto-dielectric shell. Plane wave scattering by a physical metasurface constructed of four segments of multilayered, magneto-dielectric metasurface scatterers is used as an example problem to validate cylindrical IEGSTC. A second example considers an opening on the cylindrical metasurface, confirming IE-GSTC can handle metasurfaces with openings. Good agreement is obtained between IE-GSTC results and full wave simulation results for both cases.</div>


Sign in / Sign up

Export Citation Format

Share Document