scholarly journals Design and analysis of dual dumbbell and rectangular slots SIW cavity-backed antenna at 2.45 GHz

2021 ◽  
Vol 18 (2) ◽  
pp. 211-224
Author(s):  
Velusamy Mekaladevi ◽  
Devi Nirmala ◽  
Madasamy Jayakumar

The design and realization of a wideband substrate-integrated waveguide (SIW) cavity-backed slot antenna operating at 2.45 GHz for WLAN applications are presented. Dual dumbbell-shaped slots with rectangular slots are used to achieve increased bandwidth. The bandwidth observed is 160 MHz with the dumbbell-shaped slots. Further, it has been improved up to 9.2% by adding a rectangular slot. The wideband antenna is analyzed using ANSYS HFSS and fabricated on FR-4 substrate. The measured results of the proposed design are in good agreement with the simulation results and comparable with the reported results.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dian Widi Astuti ◽  
Muhamad Asvial ◽  
Fitri Yuli Zulkifli ◽  
Eko Tjipto Rahardjo

This paper proposes bandwidth enhancement of a cavity-backed slot antenna using a triangular slot on a half-mode substrate integrated waveguide structure antenna. The bandwidth enhancement was achieved by combining the fixed TE101 and the downward shifting TE102 modes, resulting in hybrid modes. The design evolution of the slot antenna from a half nonresonating rectangular slot to a triangular slot antenna increased the fractional bandwidth. The simulation result showed that fractional bandwidth increased from 6.27% to 9.1%. It was confirmed by measurement that the fractional bandwidth of 9.87% was achieved which reflects a 350 MHz bandwidth with center frequency at 3.84 GHz. The measured gain at center frequency was 4.2 dBi. It is shown that the radiation characteristics obtained from both measurement and simulation results are in very good agreement.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Aiting Wu ◽  
Zhonghai Zhang ◽  
Boran Guan

The shape of the tuning stub of the wide slot printed antenna is an important factor which affects the antenna’s performances. In this paper, a new design and optimization method of wideband printed slot antenna using a shape blending algorithm is presented. The proposed antenna consists of a wide rectangular slot and a tuning stub, whose profile is formed by the shape blending outcome from a pie and a diamond shape. The method is used to design an ultra-wideband antenna. The impact on the impedance bandwidth through the antenna geometry change with the different shape blending results has been investigated and analyzed. To verify the proposed design, the antenna prototype was designed, fabricated, and measured. The measured results are compared with the simulation and show good agreement.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yih-Chien Chen

The-hybrid dielectric resonator antenna consisted of a cylindrical high-permittivity dielectric resonator, a rectangular slot, and two-rectangular patches were implemented. The hybrid dielectric resonator antenna had three resonant frequencies. The lower, middle, and higher resonant frequencies were associated with the rectangular slot, rectangular patches, and dielectric resonator, respectively. Parametric investigation was carried out using simulation software. The proposed hybrid dielectric resonator antenna had good agreement between the simulation results and the measurement results. The hybrid dielectric resonator antenna was implemented successfully for application in 2.4/5.2/5.8 GHz of WLAN and 2.5/3.5/5.5 GHz of WiMAX simultaneously.


2018 ◽  
Vol 68 (2) ◽  
pp. 197 ◽  
Author(s):  
Arvind Kumar ◽  
S. Raghavan

In this study, a planar cavity-backed bow-tie-complementary-ring-slot antenna is proposed, and a new approach for bandwidth enhancement using a shorted-via is introduced. A shorted-via concept overcomes the narrow impedance bandwidth of a conventional substrate integrated waveguide cavity-backed antenna. By adjusting the location of the shorted-via (placed just above the centroid of the radiating slot), the individual bandwidth of the lower and higher order resonances has been tuned below -10 dB criterion, which results in the broadening of the bandwidth. Finally, the antenna is proficient to operate for an impedance bandwidth of 15.71 per cent, ranging from 12.02~14.07 GHz. The proposed antenna shows a gain of better than 4 dBi within the operating band with less than 0.5 dBi variation. Moreover, the antenna preserves good radiation characteristics, which is similar to that of the conventional metallic counterpart. To validate the simulated results, an antenna is fabricated and tested. The simulated results in terms of the reflection coefficient, gain, and radiation patterns are in good agreement with the measured results.


2015 ◽  
Vol 37 ◽  
pp. 334
Author(s):  
Masoud Khoubroo Eslamloo ◽  
Pejman Mohammadi

In this letter a novel broad band substrate integrated waveguide (SIW) power divider is proposed. It consist of four output channels made by SIW with equal length and equal width. Design equations and process are given with mathematical analysis. The propagation constant of the output signals have been adjusted by utilize only four via in the middle of the output arms. As a result a novel equal output power divider, is obtained accordingly. The experimental results of a prototype at 10 GHz shows 3.1 GHz bandwidth in both simulation and measurement results. Return loss and transmission coefficients have good agreement with simulation results in considered band.


Author(s):  
Dian Widi Astuti ◽  
Rizki Ramadhan Putra ◽  
Muslim Muslim ◽  
Mudrik Alaydrus

The substrate integrated waveguide (SIW) structure is the candidate for many application in microwave, terahertz and millimeter wave application. It because of SIW structure can integrate with any component in one substrate than others structure. A kind components using SIW structure is a filter component, especialy bandpass filter. This research recommended SIW bandpass filter using rectangular open loop resonator for giving more selectivity of filter. It can be implemented for short range device (SRD) application in frequency region 2.4 - 2.483 GHz. Two types of SIW bandpass filter are proposed. First, SIW bandpass filter is proposed using six rectangular open loop resonators while the second SIW bandpass filter used eight rectangular open loop resonators. The simulation results for two kinds of the recommended rectangular open loop resonators have insertion loss (S<sub>21</sub> parameter) below 2 dB and return loss (S<sub>11</sub> parameter) more than 10 dB. Fabrication of the recommended two kind filters was validated by Vector Network Analyzer. The measurement results for six rectangular open loop resonators have 1.32 dB for S<sub>21</sub> parameter at 2.29 GHz while the S<sub>11</sub> parameter more than 18 dB at 2.26 GHz – 2.32 GHz. While the measurement results has good agreement for eight rectangular open loop resonators. Its have S<sub>21</sub> below 2.2 dB at 2.41 – 2.47 GHz and S<sub>11</sub> 16.27 dB at 2.38 GHz and 11.5 dB at 2.47 GHz.


2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Dian Widi Astuti ◽  
Melinda Megahari Putri ◽  
Dian Rusdiyanto

Penggunaan teknologi dinas tetap (fixed-services) bertujuan untuk memenuhi kebutuhan masyarakat akan teknologi telekomunikasi nirkabel. Pada perkembangannya muncul tantangan untuk meningkatkan performa dan efisiensi perangkat teknologi seperti penggunaan lebih dari satu frekuensi dalam satu device. Penelitian ini mendukung tantangan tersebut dengan membuat antena yang dapat bekerja untuk dua resonansi frekuensi (diplexing). Metode yang digunakan untuk mendesain antena diplexing tersebut yaitu Half Mode Substrate Integrated Waveguide (HMSIW) Cavity Backed Slot Antenna (CBSA). Metode CBSA mempunyai kemampuan untuk mencapai matching impedansi dengan mengatur inset-feed dan rectangular slot. Hasil simulasi menunjukan antena dapat bekerja pada frekuensi tengah (fC) 4,5 dan 5,8 GHz.  Nilai S11 dan S22 simulasi masing-masing memperoleh -30 dB dan -16,86 dB, serta nilai S12 dan S21 masing-masing -27 dB dan -26 dB. Sedangkan hasil pengukuran menunjukan antena bekerja pada frekuensi tengah (fC) 4,25 dan 5,67 GHz, dengan nilai S11 dan S22 masing-masing -33,10 dB dan -23,27 dB, serta nilai S12 dan S21 masing-masing -30 dB dan -29,6 dB. Hasil simulasi telah sesuai dengan spesifikasi yang diinginkan. Perbedaan dengan hasil pengukuran dapat disebabkan karena faktor pabrikasi, penyolderan dan proses etching.


2015 ◽  
Vol 8 (3) ◽  
pp. 633-641
Author(s):  
Hamsakutty Vettikalladi ◽  
Muhammad Kamran Saleem ◽  
Majeed A.S. Alkanhal

The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.


2018 ◽  
Vol 10 (10) ◽  
pp. 1166-1174 ◽  
Author(s):  
Daniele Inserra ◽  
Xiaochuan Fang ◽  
Yongjun Huang ◽  
Guangjun Wen

AbstractA coplanar waveguide slot antenna is herein presented. A rectangular slot is excited by a Y-shaped monopole etched on a single FR4 substrate. This structure exhibits two resonances due to the presence of the slot and the central monopole which can be used to design a dual-band or a wideband antenna. A parametric analysis is presented to describe the impedance matching mechanism for the two impedance bandwidths (BWs), as well as for the wideband antenna. The latter is fabricated and provides a measured impedance BW from 2.28 to 3.6 GHz, and gain larger than 2 dBi, yielding an outstanding BW/size trade-off. Finally, a 60 mm × 60 mm back metallic reflector is used to achieve a directive antenna with 6 dBi of measured gain, and an impedance BW from 2.16 to 3.59 GHz.


Author(s):  
Insha Ishteyaq ◽  
Issmat Shah Masoodi ◽  
Khalid Muzaffar

Abstract A planar rectangular slot antenna with dual-band operation and realized higher peak gain is proposed, designed, and fabricated for sub-6 GHz 5G applications. The antenna possesses a rectangular radiating slot with the inverted stub on its upper edge excited simultaneously by a micro-strip feed line having a double folded T-shaped structure. The fabricated design is of compact size with the radiating portion of 0.3 λ0 × 0.17 λ0 (λ0 represents free-space wavelength) and profile of 0.009 λ0. The measured results show the operating frequency bands of 3.29–3.63 GHz and 4.3–5.2 GHz, with a peak gain of around 7.17 dBi. The higher frequency band is generated by the feed patch and the slot whereas lower resonant frequency band is generated by the stub loaded on the slot. The measured results are in a good agreement with the simulated results. The proposed design is suitable for the International Telecommunications Union sub 6 GHz applications.


Sign in / Sign up

Export Citation Format

Share Document