scholarly journals Miniature drone antenna design for the detection of airliners

Author(s):  
Alassane Sidibe ◽  
Gaël Loubet ◽  
Alexandru Takacs ◽  
Guillaume Ferré ◽  
Anthony Ghiotto

Abstract In this paper, the design of a miniature antenna dedicated to the detection of airliners through the demodulation of Automatic Dependence Surveillance-Broadcast system (ADS-B) signals is presented. This antenna is designed for being embedded on the top of a drone in order to detect and avoid collisions with airliners. This antenna consists of an array of Planar Inverted-F Antennas, a quadrature feed network (FN) and a reflector plane (RP). The FN is designed to have output signals with the same amplitude and a 90° phase difference between each other. It achieves circular polarization and maintains the axial ratio of the antenna under −3 dB at the desired frequency (1.09 GHz). The antenna with the FN was manufactured and characterized. It weighs approximately 145 kg with its RP. The measured gain of the proposed antenna is about +3.7 dBi. To validate the design, the manufactured antenna was tested with a Universal Software Radio Peripheral for the processing of ADS-B signals at the French National Microwaves Days 2019 (JNM) student contest. The detection of airliners can reach up to 437 km.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Tuan-Yung Han

This study proposes a novel 2 × 2 array antenna design with broadband and circularly-polarized (CP) operation. The proposed design uses a simple series-fed network to increase the CP bandwidth without requiring one-by-one adjustment of each array element or a complex feed network. Selecting the appropriate spacing between each array element allows the proposed array antenna to generate CP radiation with a low axial ratio. Experimental results based on a prototype show that this 2 × 2 microstrip array antenna achieves a wide 3 dB axial ratio bandwidth of more than 10%. Simulated data are also provided to confirm the measured results.


Author(s):  
Quazi Delwar Hossain ◽  
Muhammad Asad Rahman ◽  
Md.Azad Hossain

<p>This paper presents a new circularly polarized microstrip array antenna using dual-orthogonal feed technique. The feed network for 1x2 array is designed using microstrip lines and slot lines by applying double-sided MIC concept effectively. 90 degree phase difference between two orthogonally feed signals os created by choosing appropriate feed point in the feed network to advance one of the feed signals by quarter wavelength (lemda/4) from other. Excellent radiation performance is obtained from this proposed antenna with low cross polar component. The impedence (&lt;-10dB) bandwidth of the array is 9.1% and the 3-dB axial ration bandwidth is 1.85% (9.905GHz to 10.09 GHz). The average  gain is higher than 9dBiC over the 3-dB AR bandwidth. The relation between antenna dimensions and characteristics ia also investigated with a parametric analysis of the antenna.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
Min Guo ◽  
Ji-Jun Yan ◽  
Shun-Shi Zhong ◽  
Zhu Sun

A new dielectric rod antenna (DRA) is introduced to produce circular polarization (CP) over a wide frequency band without a complex feed network. Along with the simulated results, measured results of the antenna prototype are presented, showing a 3 dB axial ratio (AR) CP bandwidth of 17.7%. The radiation characteristics of the fabricated antenna are also demonstrated showing the measured gain of better than 6.2 dBi. Moreover, the measured impedance bandwidth (VSWR≤2) reaches 20.1%, from 8.75 GHz to 10.7 GHz, while the CP beamwidth (AR≤3 dB) at the central frequency is measured over 120°.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Sachin Kumar

Abstract A compact circularly polarized (CP) patch antenna is presented for modern communication systems. The prospective antenna consists of a microstrip-line inset-fed rectangular patch and a defected ground plane. A rotated rectangular slot and a modified electric-inductive-capacitive (m-ELC) resonator are introduced in the patch and the ground plane to achieve multiband behaviour. A corner of the radiating patch is truncated and an arrow-shaped stub is introduced for generating circular polarization. The physical area of the substrate is 0.26λ0 × 0.22λ0, and the radiator size is 0.16λ0 × 0.14λ0, where λ0 is the free-space wavelength estimated at the lowest frequency. The measured (S11≤-10 dB) bandwidths of the antenna are 80 MHz (3.58%) at 2.23 GHz, 75 MHz (2.64%) at 2.84 GHz, 80 MHz (2.50%) at 3.19 GHz, and 70 MHz (1.82%) at 3.83 GHz. The measured 3-dB axial ratio bandwidths are 40 MHz (1.41%), 100 MHz (3.12%), and 60 MHz (1.57%) at 2.84, 3.20 and 3.82 GHz, respectively. The proposed planar antenna design does not need dual-feed or multi-layered patches for achieving multiple CP bands. It offers easy integration with the printed circuits of the communication systems.


2017 ◽  
Vol 9 (8) ◽  
pp. 1705-1712
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this study, a dual-layered polarization and frequency reconfigurable microstrip antenna is proposed based on sequential mechanical axial rotation of the circular metal radiator. The antenna can be reconfigured among three different polarized modes, including the linear polarization (LP), left-handed circular polarization and right-handed circular polarization in the band from 4.68 to 4.80 GHz (2.53%). The resonance frequency of the proposed antenna with the same LP mode could also be tuned in the range from 4.70 to 5.03 GHz by mechanical rotation of the breach-truncated circular metal radiator as well as the circular substrate. Furthermore, the polarization characteristic and frequency can be reconfigured, respectively, as the circular radiator is taken an axial rotation with an angle of 360°. The presented antenna in the four different states has been numerically simulated and fabricated for the experimental measurement, the investigated characteristics includes the port reflection coefficient, axial ratio, radiation pattern, gain, and the radiation efficiency. The simulated and test results agreed well with each other. This antenna enriches the novel mechanical reconfigurable method except for the popular electrical approach.


2015 ◽  
Vol 781 ◽  
pp. 81-84 ◽  
Author(s):  
Shakhirul Mat Salleh ◽  
Muzammil Jusoh ◽  
Abdul Hafiizh Ismail ◽  
Muhammad Ramlee Kamarudin ◽  
Mohamad Imran Ahmad ◽  
...  

This paper presents a reconfigurable frequency microstrip patch textile antenna using slotted technique. The switchable frequency is achieved by implementing three PIN diode switches at the slotted ground of the antenna. It is discovered that the switching element is capable to configure the frequency at six different states of operating frequencies between 1.575 GHz until 2.45 GHz. With certain switches configuration, the antenna is proficient to produce a dual-band frequency of band 1; 1.575 GHz and 2.45 GHz and band 2; 1.588 GHz and 2.36 GHz. Besides, the antenna has successfully perform an axial ratio of less than <3 dB at the GPS operating frequency of 1.575 GHz. A shieldit super is used for the antenna radiator and felt fabric as the antenna substrate. The design and simulated result shows that the presented antenna is potential to be implemented in GPS and Wi-Fi applications.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document