Cool-Season Weed Control Using Ammonium Nonanoate and Cultivation in Organic Vidalia® Sweet Onion Production

2017 ◽  
Vol 32 (1) ◽  
pp. 90-94
Author(s):  
W. Carroll Johnson ◽  
Xuelin Luo

AbstractAmmonium nonanoate is registered for weed control in certified organic cropping systems and may be useful to control cool-season weeds in organic Vidalia® sweet onion production. Ammonium nonanoate combined with tine-weeder cultivation was evaluated for weed control in organic onion in Georgia. There were no statistical interactions between main effects of herbicides and cultivation with a tine weeder for cool-season weed control and onion yield, indicating that ammonium nonanoate does not improve weed control compared with cultivation. Ammonium nonanoate at 4% and 6% did not adequately control weeds and onion yields were reduced. Ammonium nonanoate at 8% and 10% controlled cutleaf evening-primrose and lesser swinecress equal to the standard of d-limonene (14%), but the degree of control did not consistently protect onion yields from losses due to weeds. These results are in agreement with previous studies using clove oil and pelargonic acid. There is no advantage to using ammonium nonanoate for cool-season weed control in organic Vidalia® sweet onion production.

2018 ◽  
Vol 32 (6) ◽  
pp. 726-732
Author(s):  
W. Carroll Johnson ◽  
Theodore M. Webster ◽  
Timothy L. Grey ◽  
Xuelin Luo

AbstractSugarbeet, grown for biofuel, is being considered as an alternate cool-season crop in the southeastern United States. Previous research identified ethofumesate PRE and phenmedipham + desmedipham POST as herbicides that controlled troublesome cool-season weeds in the region, specifically cutleaf evening-primrose. Research trials were conducted from 2014 through 2016 to evaluate an integrated system of sweep cultivation and reduced rates of ethofumesate PRE and/or phenmedipham+desmedipham POST for weed control in sugarbeet grown for biofuel. There were no interactions between the main effects of cultivation and herbicides for control of cutleaf evening-primrose and other cool-season species in two out of three years. Cultivation improved control of cool-season weeds, but the effect was largely independent of control provided by herbicides. Of the herbicide combinations evaluated, the best overall cool-season weed control was from systems that included either a 1/2X or 1X rate of phenmedipham+desmedipham POST. Either rate of ethofumesate PRE was less effective than phenmedipham+desmedipham POST. Despite improved cool-season weed control, sugarbeet yield was not affected by cultivation each year of the study. Sugarbeet yields were greater when treated with any herbicide combination that included either a 1/2X or 1X rate of phenmedipham+desmedipham POST compared with either rate of ethofumesate PRE alone or the nontreated control. These results indicate that cultivation has a very limited role in sugarbeet grown for biofuel. The premise of effective weed control based on an integration of cultivation and reduced herbicide rates does not appear to be viable for sugarbeet grown for biofuel.


2014 ◽  
Vol 24 (6) ◽  
pp. 696-701 ◽  
Author(s):  
Wiley Carroll Johnson ◽  
Jerry W. Davis

Cultivation using a tine weeder is a proven means to manage weeds in organic Vidalia® sweet onion (Allium cepa) production. If the initial cultivation is delayed, emerged weeds are not controlled. In these cases, herbicides derived from natural products could be used to control the emerged weeds before the initial cultivation. Clove oil has been evaluated for this use, but cool-season weed control is inconsistent during the winter season when Vidalia® sweet onion are grown. Pelargonic acid is a herbicide that can be derived from natural sources or synthesized. Field trials were conducted from 2011 through 2013 to determine the efficacy of pelargonic acid for cool-season weed control in organic Vidalia® sweet onion. All possible combinations of four herbicides and three cultivation regimes using a tine weeder were evaluated. Herbicides evaluated were pelargonic acid (3% and 5% by vol.), clove oil [10% by vol. (2011 and 2012)], d-limonene [14% (2013 only)], and a nontreated control. Cultivation regimes were twice (2×) and four times (4×) at 2-week intervals, and a noncultivated control. Main effects of cultivation and herbicides were independent for all parameters, with no improvement when used in combination. Cultivation 2× and 4× controlled cool-season weeds and improved onion yields, which is consistent with previous research. Pelargonic acid (5%) controlled weeds similar to clove oil (2011 and 2012) and d-limonene (2013), with cool-season weed control efficacy being inconsistent among all herbicides. Onion yield response to weed control from any of the herbicides, including pelargonic acid, also was inconsistent. In organic onion production, inconsistent cool-season performance using pelargonic acid is similar to other herbicides derived from natural sources.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 762-767 ◽  
Author(s):  
N. C. Glaze ◽  
C. C. Dowler ◽  
A. W. Johnson ◽  
D. R. Sumner

Six multiple-cropping systems composed of: a) turnip (Brassica campestrisspp.rapifera), corn (Zea maysL.), and snapbean (Phaseolus vulgarisL.); b) turnip, peanut (Arachis hypogaeaL.), and snapbean; c) turnip, corn, and turnip; d) turnip, peanut, and turnip; e) snapbean, soybean [Glycine max(L.) Merr.], and cabbage (Brassica oleraceaL.); and f) turnip, cucumber (Cucumis sativusL.), cowpea [Vigna unguiculata(L.) Walp.], and turnip were subjected to nematicide and weed control programs of cultivation or herbicides. Herbicide programs were superior to cultivation in control of weeds. Weeds remaining in the row following cultivation competed severely with crops. Weed species remaining were altered depending on the method of control and crop. Yellow nutsedge (Cyperus esculentusL. ♯3CYPES) increased rapidly in all herbicide programs but not in cultivated plots. Pigweeds (Amaranthusspp.) were controlled by herbicides but increased in cultivated plots. Corn, peanut, soybean, and spring snapbean yields were higher in herbicide treatments than in cultivated treatments. Cucumber was the only crop that had increased yields for both main effects, herbicide and nematicide. Turnip was consistently injured in herbicide treatments, which was believed to be caused by residues from previous crops interacting with pathogens and possible allelopathic effects of decaying organic matter.


2017 ◽  
Vol 31 (6) ◽  
pp. 890-896
Author(s):  
W. Carroll Johnson ◽  
Bhabesh Dutta ◽  
F. Hunt Sanders ◽  
Xuelin Luo

Weed management in the organic Vidalia® sweet onion production system is largely dependent on multiple cultivations with a tine weeder. Earlier research suggested cultivation with a tine weeder did not predispose onion bulbs to infection during storage. Trials were conducted from 2012 through 2014 near Lyons, GA, to determine the interactive effects of cultivation, weed removal, and a biofungicide on weed densities, onion yield, grade, and diseases of stored onion. Cultivation twice or four times at biweekly intervals with a tine weeder reduced densities of cutleaf evening-primrose, lesser swinecress, and henbit compared with the noncultivated control, although weeds surviving cultivation were very large and mature at harvest. Cultivation generally improved onion yields over the noncultivated control, except in 2014, when baseline weed densities were high and weeds surviving cultivation were numerous. Weeds removed by hand weeding improved onion yields, but that effect was independent of cultivation. Four applications of a biofungicide derived from giant knotweed had no effect on onion yield. Cultivation had no effect on incidence of the fungal disease botrytis neck rot, with inconsistent effects on the bacterial diseases center rot and sour skin. Weed removal with hand weeding did not affect diseases of stored onion. The biofungicide had no effect on diseases of stored onion. These results demonstrate the limitations of cultivation when cool-season weed infestations are dense. With no interactions among main effects, weed control and onion yield response to cultivation and hand weeding are independent. Cultivation for weed control is much less costly than hand weeding. With no interaction between the cultivation and weed removal main effects, it is not necessary to supplement tine weeder cultivation with costly hand weeding.


2014 ◽  
Vol 24 (4) ◽  
pp. 428-432 ◽  
Author(s):  
W. Carroll Johnson ◽  
Jerry W. Davis

Timely cultivation with a tine weeder and hand weeding are the primary tools for successful weed control in organic sweet onion (Allium cepa), but conditions frequently arise that delay the initial cultivation. Weeds that emerge during the delay are not effectively controlled by cultivation and herbicides derived from natural products may have a role to control the emerged weeds. It has been reported that clove oil herbicide was more effective when sprayers were calibrated for higher output (>50 gal/acre) compared with sprayers calibrated at ≈25 gal/acre. However, when clove oil was applied at the recommended rate of 10% by volume, herbicide cost was doubled when sprayer output volume was doubled. It was theorized that herbicide adjuvants might improve clove oil efficacy and reduce weed control cost by not needing to increase sprayer output volume. Trials were conducted from 2010 to 2012 to evaluate all possible combinations of two sprayer output volumes and five herbicide adjuvants used with clove oil (10% by volume) for cool season weed control. Sprayer output volumes evaluated were 25 and 50 gal/acre, using spray tips of differing orifice size. Adjuvants evaluated were a material composed of saponins, citric acid plus garlic extract, an emulsified petroleum oil (EPO) insecticide, a conventional petroleum oil adjuvant (POA), no adjuvant used with clove oil, and a nontreated control. Weed control was not consistently improved by applying clove oil (10% by volume) with a sprayer calibrated at 50 gal/acre compared with sprayer calibrated at 25 gal/acre. Improvements in weed control that were occasionally seen did not affect onion yield. Adjuvants provided minimal improvement in weed control from clove oil and did not consistently improve onion yield. Based on these results, clove oil does not provide suitable levels of weed control in organic Vidalia® sweet onion production to justify the expense.


2012 ◽  
Vol 22 (1) ◽  
pp. 64-69 ◽  
Author(s):  
W. Carroll Johnson ◽  
David B. Langston ◽  
Daniel D. MacLean ◽  
F. Hunt Sanders ◽  
Reid L. Torrance ◽  
...  

Field experiments were conducted from 2008 through 2010 near Lyons, GA, to develop integrated weed management systems for organic Vidalia® sweet onion (Allium cepa) production. Treatments were a factorial arrangement of summer solarization, cultivation with a tine weeder, and a clove oil herbicide. Plots were solarized with clear plastic mulch during the summer fallow period before transplanting onion. Cultivation treatments were twice at 2-week intervals, four times at 2-week intervals, and a noncultivated control. Herbicide treatments were clove oil plus vinegar, clove oil plus an emulsified petroleum oil (EPO) insecticide used as an adjuvant, and a nontreated control. ‘Savannah Sweet’ onions were transplanted in early-December each year, with cultivation and herbicide applications events occurring the following January and February. Onions were harvested the following spring. In addition to yield measurement, a subsample of harvested onion was stored in a controlled atmospheric (CA) storage facility to evaluate treatment effects on diseases of stored onion. Summer fallow solarization did not control the cool-season weeds present in these trials. Cultivating transplanted onion with a tine weeder effectively managed cutleaf eveningprimrose (Oenothera laciniata) and swinecress (Coronopus didymus) and improved onion yields in 2 of 3 years. There was little difference in overall performance between two cultivations and four cultivations with the tine weeder. The 1 year of marginal weed control with the tine weeder was due to persistently wet soils during winter months that inhibited optimum performance of the implement. Clove oil, combined with vinegar or an EPO insecticide, provided marginal weed control and had no effect on onion yield. Diseases of stored onion were unaffected by any of the treatment combinations, although overall incidence of diseases of stored onion was higher in 2010 compared with other years. This corresponds with the 1 year of marginal weed control with the tine weeder, suggesting that the presence of weeds may be a factor related to disease incidence during storage.


2009 ◽  
Vol 23 (3) ◽  
pp. 431-437 ◽  
Author(s):  
Hussein F. H. Abouziena ◽  
Ahmad A. M. Omar ◽  
Shiv D. Sharma ◽  
Megh Singh

There is an urgent need to accelerate the development and implementation of effective organic-compliant herbicides that are environmentally safe and that help the producer meet increasing consumer demand for organic products. Therefore, greenhouse experiments were conducted to evaluate the effectiveness of acetic acid (5%), acetic acid (30%), citric acid (10%), citric acid (5%) + garlic (0.2%), citric acid (10%) + garlic (0.2%), clove oil (45.6%), and corn gluten meal (CGM) compounds as natural-product herbicides for weed control. The herbicides were applied to the broadleaf weeds stranglervine, wild mustard, black nightshade, sicklepod, velvetleaf, and redroot pigweed and to narrowleaf weeds crowfootgrass, Johnsongrass, annual ryegrass, goosegrass, green foxtail, and yellow nutsedge. The herbicides were applied POST at two weed growth stages, namely, two to four and four to six true-leaf stages. CGM was applied PPI in two soil types. Citric acid (5%) + garlic (0.2%) had the greatest control (98%) of younger broadleaf weeds, followed by acetic acid (30%) > CGM > citric acid (10%) > acetic acid (5%) > citric acid (10%) + garlic (0.2%), and clove oil. Wild mustard was most sensitive to these herbicides, whereas redroot pigweed was the least sensitive. Herbicides did not control narrowleaf weeds except for acetic acid (30%) when applied early POST (EPOST) and CGM. Acetic acid (30%) was phytotoxic to all broadleaf weeds and most narrowleaf weeds when applied EPOST. Delayed application until the four- to six-leaf stage significantly reduced efficacy; acetic acid was less sensitive to growth stage than other herbicides. These results will help to determine effective natural herbicides for controlling weeds in organic farming.


1992 ◽  
Vol 117 (2) ◽  
pp. 255-259
Author(s):  
Brian A. Kahn ◽  
Raymond Joe Schatzer

The herbicides paraquat, trifluralin, and metolachlor were compared for efficacy of weed control in cowpea [Vigna unguiculata (L.) Walp.] with and without cultivation as a supplemental strategy. Herbicides also were compared against a no cultivation-no herbicide treatment (control) and against cultivation without an herbicide. Cultivation had no significant effect on seed yield, biological yield, or harvest index of cowpea. Paraquat, applied before seeding but after emergence of weeds, was ineffective for weed control and usually did not change cowpea yield from that obtained without an herbicide. Trifluralin and metolachlor more than tripled cowpea seed yield compared with that obtained without an herbicide in 1988, when potential weed pressure was 886 g·m-2 (dry weight). The main effects of trifluralin and metolachlor were not significant for cowpea seed yield in 1989, when potential weed pressure was 319 g·m-2 (dry weight). However, in 1989, these two herbicides still increased cowpea seed yield compared with that of the control and increased net farm income by more than $300/ha compared with the income obtained from the control. Chemical names used 1,1'-dimethyl-4,4' -bipyridlnium salts (paraquat); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl) benzenamine (trifluralin); 2-chloro-N-(2-ethyl-6 -methylphenyl)-N-(2-methoxy-l-methylethyl) acetamide (metolachlor).


Agriculture ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 74 ◽  
Author(s):  
Guillaume Adeux ◽  
Simon Giuliano ◽  
Stéphane Cordeau ◽  
Jean-Marie Savoie ◽  
Lionel Alletto

Sign in / Sign up

Export Citation Format

Share Document