Interactions among Cultivation, Weeds, and a Biofungicide in Organic Vidalia® Sweet Onion

2017 ◽  
Vol 31 (6) ◽  
pp. 890-896
Author(s):  
W. Carroll Johnson ◽  
Bhabesh Dutta ◽  
F. Hunt Sanders ◽  
Xuelin Luo

Weed management in the organic Vidalia® sweet onion production system is largely dependent on multiple cultivations with a tine weeder. Earlier research suggested cultivation with a tine weeder did not predispose onion bulbs to infection during storage. Trials were conducted from 2012 through 2014 near Lyons, GA, to determine the interactive effects of cultivation, weed removal, and a biofungicide on weed densities, onion yield, grade, and diseases of stored onion. Cultivation twice or four times at biweekly intervals with a tine weeder reduced densities of cutleaf evening-primrose, lesser swinecress, and henbit compared with the noncultivated control, although weeds surviving cultivation were very large and mature at harvest. Cultivation generally improved onion yields over the noncultivated control, except in 2014, when baseline weed densities were high and weeds surviving cultivation were numerous. Weeds removed by hand weeding improved onion yields, but that effect was independent of cultivation. Four applications of a biofungicide derived from giant knotweed had no effect on onion yield. Cultivation had no effect on incidence of the fungal disease botrytis neck rot, with inconsistent effects on the bacterial diseases center rot and sour skin. Weed removal with hand weeding did not affect diseases of stored onion. The biofungicide had no effect on diseases of stored onion. These results demonstrate the limitations of cultivation when cool-season weed infestations are dense. With no interactions among main effects, weed control and onion yield response to cultivation and hand weeding are independent. Cultivation for weed control is much less costly than hand weeding. With no interaction between the cultivation and weed removal main effects, it is not necessary to supplement tine weeder cultivation with costly hand weeding.

2016 ◽  
Vol 30 (3) ◽  
pp. 655-663 ◽  
Author(s):  
Ran N. Lati ◽  
Mark C. Siemens ◽  
John S. Rachuy ◽  
Steven A. Fennimore

The performance of the Robovator (F. Poulsen Engineering ApS, Hvals⊘, Denmark), a commercial robotic intrarow cultivator, was evaluated in direct-seeded broccoli and transplanted lettuce during 2014 and 2015 in Salinas, CA, and Yuma, AZ. The main objective was to evaluate the crop stand after cultivation, crop yield, and weed control efficacy of the Robovator compared with a standard cultivator. A second objective was to compare hand weeding time after cultivation within a complete integrated weed management (IWM) system. Herbicides were included as a component of the IWM system. The Robovator did not reduce crop stand or marketable yield compared with the standard cultivator. The Robovator removed 18 to 41% more weeds at moderate to high weed densities and reduced hand-weeding times by 20 to 45% compared with the standard cultivator. At low weed densities there was little difference between the cultivators in terms of weed control and hand-weeding times. The lower-hand weeding time with the Robovator treatments suggest that robotic intrarow cultivators can reduce dependency on hand weeding compared with standard cultivators. Technological advancements and price reductions of these types of machines will likely improve their weed removal efficacy and the long-term viability of IWM programs that will use them.


2017 ◽  
Vol 9 (1) ◽  
pp. 539-543
Author(s):  
Aradhana Bali ◽  
B. R. Bazaya ◽  
Sandeep Rawal

A field experiment was conducted during kharif season of 2011 at Research Farm, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu to evaluate the effect of weed management prac-tices on yield and nutrient uptake of soybean utilizing different resource management strategies. The lowest weed density and dry matter of weeds was recorded with hand weeding at 15 and 35 days after sowing (DAS) which was equally effective as imazethapyr @ 75 g ha -1 (PoE) fb hoeing at 35 DAS and quizalofop-ethyl @ 40 g ha-1 (PoE) fb hoeing at 35 DAS. All weed control treatments had significant effect on yield and nutrient up-take of soybean. Among the different weed control treatments, lowest N, P and K uptake by weeds were recorded in hand-weeding (15 and 35 DAS) which was statistically at par with imazethapyr @ 75 g ha -1 fb hoeing at 35 DAS. The maximum uptake by seed and straw were recorded in weed free which was statistically at par with twice hand weeding at 15 and 35 DAS, imazethapyr @ 75 g ha-1 fb hoeing at 35 DAS and quizalofop-ethyl @ 40 g ha-1 fb hoeing at 35 DAS. The highest seed and straw yield of soybean was harvested with hand-weeding (15 and 35 DAS) followed by imazethapyr @ 75 g ha -1 fb hoeing at 35 DAS. For the first time, soybean crop has been introduced in Jammu region for research purpose. Weed management varies with agro-climatic conditions. The study would be helpful to understand weed menace in this particular climatic condition of Jammu and to manage them combinedly and efficiently.


2004 ◽  
Vol 18 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
K. Neil Harker ◽  
George W. Clayton ◽  
John T. O'Donovan ◽  
Robert E. Blackshaw ◽  
F. Craig Stevenson

Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.


1996 ◽  
Vol 76 (4) ◽  
pp. 915-919 ◽  
Author(s):  
R. E. Blackshaw ◽  
G. Saindon

A field study was conducted during 3 yr to determine the growth and yield response of Pinto, Pink Red and Great Northern dry beans to various doses of imazethapyr. Imazethapyr was applied postemergence at 0, 25, 50 75 100, 150, and 200 g ha−1 to each class of dry bean. Results indicated that these four classes of dry beans responded similarly to imazethapyr. Dry bean injury increased and yields were reduced as dose of imazethapyr increased. At the proposed use dose of 50 g ha−1, imazethapyr reduced yield by 5 to 6%. Imazethapyr at 100 g ha−1 reduced dry bean yield by 10 to 12% and delayed maturity by 3 to 4 d. Benefits of superior weed control attained with imazethapyr should be weighed against potential crop injury when growers consider using imazethapyr in their dry bean weed management programs. Key words: Herbicide injury, maturity, seed yield, seed weight


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 138 ◽  
Author(s):  
Hilary Sandler

Integrated weed management (IWM) has been part of cranberry cultivation since its inception in the early 19th century. Proper site and cultivar selection, good drainage, rapid vine establishment, and hand weeding are as important now for successful weed management as when the industry first started. In 1940, Extension publications listed eight herbicides (e.g., petroleum-based products, inorganic salts and sulfates) for weed control. Currently, 18 herbicides representing 11 different modes of action are registered for use on cranberries. Nonchemical methods, such as hand weeding, sanding, flooding, and proper fertilization, remain integral for managing weed populations; new tactics such as flame cultivation have been added to the toolbox. Priority ratings have been developed to aid in weed management planning. Despite many efforts, biological control of weeds remains elusive on the commercial scale. Evaluation of new herbicides, unmanned aerial systems (UAS), image analysis, and precision agriculture technology; investigation of other management practices for weeds and their natural enemies; utilization of computational decision making and Big Data; and determination of the impact of climate change are research areas whose results will translate into new use recommendations for the weed control of cranberry.


2016 ◽  
Vol 34 (1) ◽  
pp. 57-64 ◽  
Author(s):  
S. MUHAMMAD ◽  
I. MUHAMMAD ◽  
A. SAJID ◽  
L. MUHAMMAD ◽  
A. MAQSHOOF ◽  
...  

Weed management is a primary concern in direct seeded rice (DSR) cropping because weed growth becomes a major constraint on crop yield. A two year field study was set up to evaluate the effect of various weed control measures on crop growth, grain yield and grain quality of DSR. The experiment involved five different weed control measures: hand weeding, hoeing, inter-row tine cultivation, inter-row spike hoeing and herbicide treatment (Nominee 100 SC). The extent of weed control (compared to a non-weeded control) ranged from 50-95%. The highest crop yield was obtained using hand weeding. Hand weeding, tine cultivation and herbicide treatment raised the number of fertile rice tillers formed per unit area and the thousand grain weight. Tine cultivation provided an effective and economical level of weed control in the DSR crop.


Author(s):  
Clusterbean . ◽  
Hand Weeding ◽  
Imazethapyr . ◽  
Pendimethalin . ◽  
Weed Management

A field experiment was conducted during Kharif seasons of 2014 and 2015 at Udaipur (Rajasthan) to find out the effect of weed management on productivity of clusterbean under varying fertility levels. The results revealed that among various weed management practices, two hand weeding 20 and 40 DAS recorded significantly lower weed dry matter, higher weed control efficiency, higher values of yield attributes, seed, haulm and biological yield during both the years over rest of the treatments except sequential application of pendimethalin fb imazethapyr which was statistically at par. Further, application of Imazethapyr fb hand weeding and pendimethalin fb hand weeding also gave comaparable results with pendimethalin fb imazethapyr in terms of weed control efficiency and yields. Among the fertility levels application 20 Kg N + 40 Kg P2O5 ha-1 significantly increased pods plant-1 (24.04), seeds pod-1, (7.12), test weight ( 25.33 g), seed ( 1035 kg ha-1), haulm (2161 kg ha-1) and biological (3196 kg ha-1 ) yield and harvest index ( 31.98 %) of clusterbean over 10 Kg N + 20 Kg P2O5 ha-1 however, it was found statistically at par with fertility level 30 Kg N + 60 Kg P2O5 ha-1. Therefore, clusterbean should be fertilized with 20 Kg N + 40 Kg P2O5 ha-1 and weeds must be controlled with pendimethalin (PE) fb imazethapyr 0.1 kg ha-1 20 DAS .


2017 ◽  
Vol 32 (1) ◽  
pp. 90-94
Author(s):  
W. Carroll Johnson ◽  
Xuelin Luo

AbstractAmmonium nonanoate is registered for weed control in certified organic cropping systems and may be useful to control cool-season weeds in organic Vidalia® sweet onion production. Ammonium nonanoate combined with tine-weeder cultivation was evaluated for weed control in organic onion in Georgia. There were no statistical interactions between main effects of herbicides and cultivation with a tine weeder for cool-season weed control and onion yield, indicating that ammonium nonanoate does not improve weed control compared with cultivation. Ammonium nonanoate at 4% and 6% did not adequately control weeds and onion yields were reduced. Ammonium nonanoate at 8% and 10% controlled cutleaf evening-primrose and lesser swinecress equal to the standard of d-limonene (14%), but the degree of control did not consistently protect onion yields from losses due to weeds. These results are in agreement with previous studies using clove oil and pelargonic acid. There is no advantage to using ammonium nonanoate for cool-season weed control in organic Vidalia® sweet onion production.


2015 ◽  
Vol 29 (4) ◽  
pp. 751-757 ◽  
Author(s):  
Jonne Rodenburg ◽  
Kazuki Saito ◽  
Runyambo Irakiza ◽  
Derek W. Makokha ◽  
Enos A. Onyuka ◽  
...  

Time requirements, weed control efficacy, and yield effects of three labor-saving weed technologies were tested against hand weeding during three seasons in 2012 and 2013. The technologies included two hand-operated mechanical weeders, the straight-spike and the twisted-spike floating weeder, and the PRE application of oxadiazon. The straight-spike floating weeder reduced weeding time by 32 to 49%, the twisted-spike floating weeder reduced weeding time by 32 to 56%, and the application of herbicide required 88 to 97% less time than hand weeding. Herbicide application provided the best weed control in two of the three seasons. No differences in weed control efficacy were observed between mechanical and hand weeding. Yield differences were only observed in season 3 with higher rice yields after PRE application of oxadiazon compared with other weed management treatments.


2018 ◽  
Vol 45 (1) ◽  
pp. 38-44 ◽  
Author(s):  
W. Carroll Johnson ◽  
Albert K. Culbreath ◽  
Xuelin Luo

ABSTRACT During previous organic peanut weed management trials, maintenance pesticides were not applied and it was observed that insect infestations and disease epidemics were not problematic. This was surprising considering that conventional peanut are routinely treated with insecticides and fungicides to control common pests. It was hypothesized that components of the organic peanut production system could be integrated into conventional peanut production to reduce inputs. Structured research trials were conducted from 2012 through 2014 to determine interactions among three levels of weed control, two levels of insect control, and three levels of fungal disease control in organic peanut production using a factorial arrangement of treatments. Weed control treatments were weed-free using handweeding, cultivation with a tine weeder repeated weekly for six weeks, and a non-cultivated (weedy) control. Insect control treatments were two early-season applications of spinosad (Organic Materials Review Institute approved) and a nontreated control. Fungal disease control treatments were applications of cupric oxide plus sulfur (Cu+S) at three-week intervals, the conventional fungicide azoxystrobin at three-week intervals, and a nontreated control. The peanut cultivar Georgia-04S was planted each year of the study. The crop rotation at the research sites was corn grown in alternating years between peanut experiments. There were no interactions among the main effects. Compared to the non-cultivated control, cultivation with a tine weeder consistently reduced weed densities, and yields were equivalent to handweeded peanut two years of three. Intensive cultivation with a tine weeder did not increase disease epidemics or reduce peanut yield, which is contradictory to long-standing peanut production recommendations. Spinosad applications did not affect any of the parameters measured, including incidence of thrips-vectored spotted wilt and peanut yield. Cupric oxide plus sulfur controlled peanut diseases equal to azoxystrobin two years out of three, but peanut yields did not consistently respond to improved disease control from the conventional fungicide. We speculate that ideal crop rotations to reduce disease inoculum and modern peanut cultivars with improved disease tolerance are also factors that allow the use of reduced pest control inputs.


Sign in / Sign up

Export Citation Format

Share Document