scholarly journals Flumioxazin effects on soybean canopy formation and soil-borne pathogen presence

2020 ◽  
Vol 34 (5) ◽  
pp. 711-717
Author(s):  
Grant L Priess ◽  
Jason K Norsworthy ◽  
Trenton L Roberts ◽  
Terry N Spurlock

AbstractRapid crop canopy formation is important to reduce weed emergence and selection for herbicide resistance. Field experiments were conducted in 2017 and 2018 in Fayetteville, AR, to evaluate the impacts of PRE applications of flumioxazin on soybean injury, soybean density, canopy formation, and incidence of soil-borne pathogens. Flumioxazin was applied at 0, 70, and 105 g ai ha−1 to predetermined flumioxazin-tolerant and -sensitive soybean varieties. Flumioxazin at 70 g ha−1 injured the tolerant and sensitive varieties from 0% to 4% and 14% to 15%, respectively. When averaged over flumioxazin rates, density of the sensitive variety was only reduced in 2017 when activation of flumioxazin was delayed 7 d. Compared to the tolerant soybean variety, flumioxazin at 70 g ha−1 delayed the sensitive variety from reaching 20%, 40%, 60%, and 80% groundcover by 15, 16, 11, and 5 d, respectively. No delay in canopy closure (95% groundcover) was observed with either variety. Consequently, no yield loss occurred for either variety following a flumioxazin application. Flumioxazin did not impact root colonization of Didymella, Fusarium, Macrophomina, or Rhizoctonia. Pythium colonization of the soybean stem was increased by flumioxazin in 2017, but not in 2018. Increased injury, delays in percent groundcover, and an increase in Pythium colonization of soybean following a flumioxazin application may warrant the need for other soil-applied herbicides at soybean planting. Alternatively, soybean injury and delays in percent groundcover following flumioxazin applications can be mitigated through appropriate variety selection; however, comprehensive screening is needed to determine which varieties are most tolerant to flumioxazin.

2021 ◽  
pp. 1-39
Author(s):  
Nathan H. Haugrud ◽  
Thomas J. Peters

Abstract The invasion of waterhemp into northern sugarbeet growing regions has prompted producers to re-integrate inter-row cultivation into weed management programs as no currently registered herbicides can control glyphosate-resistant waterhemp POST in crop. Inter-row cultivation was a common weed control practice in sugarbeet until the release of glyphosate-resistant sugarbeet cultivars in 2008 made the use of inter-row cultivation unnecessary. In the late 2010s, producers began again to use inter-row cultivation to remove weeds that glyphosate did not control, but producers need information on the effectiveness and safety of inter-row cultivation when used with soil residual herbicide programs. Efficacy and tolerance field experiments were conducted in Minnesota and North Dakota from 2017 to 2019. Results from the efficacy experiment demonstrated cultivation improved waterhemp control 11% and 12%, 14 and 28 DAT, respectively. Waterhemp response to cultivation was dependent on crop canopy and precipitation after cultivation. Cultivation had minimal effect on waterhemp density in three environments, but at one environment, near Galchutt, ND in 2019, waterhemp density increased 600% and 196%, 14 and 28 DAT, respectively. Climate data indicated Galchutt, ND in 2019 received 105 mm of precipitation in the 14 days following cultivation and had an open crop canopy which likely contributed to further weed emergence. Results from the tolerance experiment demonstrated root yield and recoverable sucrose were not affected by cultivation timing or number of cultivations. In one environment, cultivating reduced sucrose content by 0.8% regardless of date or cultivation number, but no differences were found in three environments. In-season cultivation can damage/destroy leaf tissue which is likely responsible for the reduction in sucrose content. Results indicate cultivation can be a valuable tool to control weeds that herbicide cannot, but excessive rainfall and open crop canopy following cultivation can create an environment conducive to further weed emergence.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 533-539 ◽  
Author(s):  
Paul Cowan ◽  
Susan E. Weaver ◽  
Clarence J. Swanton

Field experiments were conducted to determine the influence of time of emergence and density of single and multispecies populations of pigweed and barnyardgrass on soybean yield and competitive abilities of pigweed and barnyardgrass. Pigweed and barnyardgrass were established at selected densities within 12.5 cm on either side of the soybean row. Pigweed and barnyardgrass seeds were sown concurrently with soybean and at the cotyledon stage of soybean growth. Time and density of pigweed and barnyardgrass seedling emergence relative to soybean influenced the magnitude of soybean yield loss. Maximum soybean yield loss ranged from 32 to 99%, depending upon time of emergence relative to soybean. Pigweed was more competitive than barnyardgrass across all locations, years, and time of weed emergence. When pigweed was assigned a competitive index of 1 on a scale from 0 to 1, the competitive ability of barnyardgrass ranged from 0.075 to 0.40 of pigweed, depending upon location and time of emergence. This is the first multiple weed species study to include time of weed emergence relative to the crop. Competitive index values for multiple weed species must be calculated from field experiments in which weeds are grown with the crop under differing environmental conditions.


1994 ◽  
Vol 8 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Theodore M. Webster ◽  
Mark M. Loux ◽  
Emilie E. Regnier ◽  
S. Kent Harrison

Field experiments were established at Columbus and near South Charleston, OH to determine the effects of giant ragweed population density on soybean yield and to characterize the development of giant ragweed grown in 76-cm soybean rows. An economic threshold was calculated for Ohio using a common treatment for giant ragweed control in soybean. A cost of $41/ha was estimated for a farmer to apply 0.56 kg/ha bentazon plus 0.28 kg/ha fomesafen plus COC (1.25% v/v). Assuming a soybean value of $0.22/kg, the cost of control was equivalent to 5.4 and 7.1% of the soybean yield in 1991 and 1992, respectively, which corresponded to the yield loss caused by 0.08 and 0.03 giant ragweed plants/m2. The competitiveness of giant ragweed can be at least partly attributed to its ability to initiate and maintain axillary leaves and branches within the shaded confines of the soybean canopy.


2010 ◽  
Vol 46 (No. 1) ◽  
pp. 21-26 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
O. Veškrna ◽  
L. Bobková

Reactions to artificial infection with Fusarium graminearum isolates and a new fungicide Swing Top were studied in nine winter wheat cultivars evaluated in field experiments at two sites for three years for expression of symptoms, deoxynivalenol (DON) content in grain and grain yield. The results demonstrate a pronounced and relatively stable effect of cultivar resistance on reducing head blight, grain yield losses and contamination of grain by the mycotoxin DON. It is advantageous that the moderate level of resistance to Fusarium head blight (FHB) was detected also in two commonly grown Czech cultivars Sakura and Simila. Average fungicide efficacy for DON was 49.5% and 63.9% for a reduction in yield loss, however, it was found highly variable in different years and sites. The joint effect of cultivar resistance and fungicide treatment was 86.5% for DON and even 95.4% for reducing the yield loss. A very high risk was documented for susceptible cultivars and also the effects of medium responsive cultivars were found to be highly variable in different environments and therefore not guaranteeing sufficient protection against FHB under different conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 318 ◽  
Author(s):  
Charles Nelimor ◽  
Baffour Badu-Apraku ◽  
Antonia Yarney Tetteh ◽  
Ana Luísa Garcia-Oliveira ◽  
Assanvo Simon-Pierre N’guetta

Maize landrace accessions constitute an invaluable gene pool of unexplored alleles that can be harnessed to mitigate the challenges of the narrowing genetic base, declined genetic gains, and reduced resilience to abiotic stress in modern varieties developed from repeated recycling of few superior breeding lines. The objective of this study was to identify extra-early maize landraces that express tolerance to drought and/or heat stress and maintain high grain yield (GY) with other desirable agronomic/morpho-physiological traits. Field experiments were carried out over two years on 66 extra-early maturing maize landraces and six drought and/or heat-tolerant populations under drought stress (DS), heat stress (HS), combined both stresses (DSHS), and non-stress (NS) conditions as a control. Wide variations were observed across the accessions for measured traits under each stress, demonstrating the existence of substantial natural variation for tolerance to the abiotic stresses in the maize accessions. Performance under DS was predictive of yield potential under DSHS, but tolerance to HS was independent of tolerance to DS and DSHS. The accessions displayed greater tolerance to HS (23% yield loss) relative to DS (49% yield loss) and DSHS (yield loss = 58%). Accessions TZm-1162, TZm-1167, TZm-1472, and TZm-1508 showed particularly good adaptation to the three stresses. These landrace accessions should be further explored to identify the genes underlying their high tolerance and they could be exploited in maize breeding as a resource for broadening the genetic base and increasing the abiotic stress resilience of elite maize varieties.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
R.M. IKRAM ◽  
A. TANVEER ◽  
R. MAQBOOL ◽  
M.A. NADEEN

ABSTRACT: Brown chickpea (Cicer arietinum L.) is one of the two chickpea types grown in Pakistan and other countries. The critical period for weed removal in a rainfed chickpea system is an important consideration in devising weed management strategies. Field experiments were conducted in the winter season of 2011 and 2012 to determine the extent of yield loss with different periods of weed crop competition. Seven weed crop competition periods (0, 45, 60, 75, 90, 105 and 160 days after sowing - DAS) were used to identify the critical period for weed removal in rainfed chickpea. Experimental plots were naturally infested with Euphorbia dracunculoides and Astragalus sp. in both years. Individual, composite density and dry weights of E. dracunculoides and Astragalussp. increased significantly with an increase in the competition period. However, yield and yield-contributing traits of chickpea significantly decreased with an increase in the competition period. Chickpea seed yield loss was 11-53% in different weed crop competition periods. Euphorbia dracunculoides and Astragalus sp. removed 39.9 and 36.9 kg ha-1 of N, 9.61 and 7.27 kg ha-1 of P and 38.3 and 36.9 kg ha-1 of K, respectively. Season long weed competition (160 days after sowing) resulted in 19.5% seed protein content compared with 24.5% seed protein content in weed-free chickpea. A Logistic equation was fitted to yield data in response to increasing periods of weed crop competition. The critical timing of weed removal at 5 and 10% acceptable yield losses were 26 and 39 DAS, respectively. The observed critical period suggests that in rainfed chickpea, a carefully timed weed removal could prevent grain yield losses.


2017 ◽  
Vol 32 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractWith the recent confirmation of protoporphyrinogen oxidase (PPO)-resistant Palmer amaranth in the US South, concern is increasing about the sustainability of weed management in cotton production systems. Cover crops can help to alleviate this problem, as they can suppress weed emergence via allelochemicals and/or a physical residue barrier. Field experiments were conducted in 2014 and 2015 at the Arkansas Agricultural Research and Extension Center to evaluate various cover crops for suppressing weed emergence and protecting cotton yield. In both years, cereal rye and wheat had the highest biomass production, whereas the amount of biomass present in spring did not differ among the remaining cover crops. All cover crops initially diminished Palmer amaranth emergence. However, cereal rye provided the greatest suppression, with 83% less emergence than in no cover crop plots. Physical suppression of Palmer amaranth and other weeds with cereal residues is probably the greatest contributor to reducing weed emergence. Seed cotton yield in the legume and rapeseed cover crop plots were similar when compared with the no cover crop treatment. The seed cotton yield collected from cereal cover crop plots was lower than from other treatments due to decreased cotton stand.


Author(s):  
Sanjeev Kumar ◽  
Sangita Sahni ◽  
Bishun Deo Prasad

Chickpea (Cicer arietinum) is one of the world’s major legume crops and suffers substantial damage from wilt disease caused by Fusarium oxysporum f. sp. ciceri( Padwick) with yield loss over 60 per cent. It is an important soil borne plant pathogen and is difficult to manage by application of chemical pesticides. Moreover, the chemical control is costly and leads to residual effect. A plethora of reports indictes the efforts made to reduce environmental effects and rationalize the use of pesticides and manage the pathogen more effectively through Integration of Disease Management (IDM). Application of soil amendments and specific bio-control agents also incorporated in IDM which has potential to suppress soil-borne pathogens through manipulation of the physicochemical and microbiological environment. Therefore, IDM approach for controlling chickpea Fusarium wilt might be a cost effective and eco-friendly approach.


2000 ◽  
Vol 53 ◽  
pp. 38-43
Author(s):  
S.S. Seefeldt ◽  
M.L. Armstrong

Research was conducted to determine the effect of perennial ryegrass (Lolium perenne) sowing density on weed growth and development In glasshouse and field experiments perennial ryegrass was sown at rates of 0 5 10 20 40 and 80 kg/ha with 5 kg/ha of white clover (Trifolium repens) With increasing seeding density perennial ryegrass enhanced its competitiveness against all five of the weeds studied viz nodding thistle (Carduus nutans) Californian thistle (Cirsium arvense) Scotch thistle (Cirsium vulgare) ragwort (Senecio jacobaea) and hedge mustard (Sisymbrium officinale) In both trials increases in the perennial ryegrass seeding density did not reduce weed emergence However as perennial ryegrass density increased weed biomass decreased and time to flowering increased


Sign in / Sign up

Export Citation Format

Share Document