scholarly journals Survey of glyphosate-, atrazine- and lactofen-resistance mechanisms in Ohio waterhemp (Amaranthus tuberculatus) populations

Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 296-302 ◽  
Author(s):  
Brent P. Murphy ◽  
Alvaro S. Larran ◽  
Bruce Ackley ◽  
Mark M. Loux ◽  
Patrick J. Tranel

AbstractHerbicide resistance within key driver weeds, such as common waterhemp [Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif ], constrains available management options for crop production. Routine surveillance for herbicide resistance provides a mechanism to monitor the development and spread of resistant populations over time. Furthermore, the identification and quantification of resistance mechanisms at the population level can provide information that helps growers develop effective management plans. Populations of Amaranthus spp., including A. tuberculatus, redroot pigweed (Amaranthus retroflexus L.), and Palmer amaranth (Amaranthus palmeri S. Watson), were collected from 51 fields in Ohio during the 2016 growing season. Twenty-four A. tuberculatus populations were screened for resistance to the herbicides lactofen, atrazine, and glyphosate. Phenotypically resistant plants were further investigated to determine the frequency of known resistance mechanisms. Resistance to lactofen was infrequently observed throughout the populations, with 8 of 22 populations exhibiting resistant plants. Within those eight resistant populations, the ΔG210 resistance mechanism was observed in 17 of 30 phenotypically resistant plants, and the remainder lacked all known resistance mechanisms. Resistance to atrazine was observed in 12 of 15 populations; however, a target-site resistance mechanism was not observed in these populations. Resistance to glyphosate was observed in all populations. Gene amplification was the predominant glyphosate-resistance mechanism (147 of 322 plants) in the evaluated populations. The Pro-106-Ser mutation was identified in 24 plants, half of which also possessed gene amplification. In this study, molecular screening generally underestimated the phenotypically observed resistance. Continued mechanism discovery and marker development is required for improved detection of herbicide resistance through molecular assays.

Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Patrick J. Tranel ◽  
Chenxi Wu ◽  
Ahmed Sadeque

It is generally expected that, in the case of multiple herbicide resistance, different resistance mechanisms within a weed will follow Mendel’s law of independent assortment. Research was conducted to investigate anecdotal observations suggesting that target site–based resistances to inhibitors of acetolactate synthase (ALS) and protoporphyrinogen oxidase (PPO) did not follow independent assortment in common waterhemp. Cosegregation of the two resistances was observed in backcross lines (population sensitive to both herbicides as recurrent parent). Specifically, whereas 52% of backcross plants were resistant to a PPO inhibitor, this percentage increased to 92% when the backcross plants were preselected for resistance to an ALS inhibitor. Molecular marker analysis confirmed that the corresponding genes (ALSandPPX2) were genetically linked. When data from all plants analyzed were pooled, the genetic distance between the two genes was calculated to be 7.5 cM. The two genes were found to be about 195 kb apart in the recently published grain amaranth genome, explaining the observed genetic linkage. There is likely enough recombination that occurs between the linked genes to prevent the linkage from having significant implications in terms of resistance evolution. Nevertheless, documentation of the happenstance linkage between target-site genes for resistance to ALS and PPO inhibitors in waterhemp is a reminder that one should not assume distinct resistance mechanism will independently assort.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
Maxwel C Oliveira ◽  
Darci A Giacomini ◽  
Nikola Arsenijevic ◽  
Gustavo Vieira ◽  
Patrick J Tranel ◽  
...  

Abstract Failure to control Palmer amaranth with glyphosate and protoporphyrinogen IX oxidase (PPO)-inhibitor herbicides was reported across southwestern Nebraska in 2017. The objectives of this study were to 1) confirm and 2) validate glyphosate and PPO-inhibitor (fomesafen and lactofen) resistance in 51 Palmer amaranth accessions from southwestern Nebraska using genotypic and whole-plant phenotypic assay correlations and cluster analysis, and 3) determine which agronomic practices might be influencing glyphosate resistance in Palmer amaranth accessions in that location. Based on genotypic assay, 88% of 51 accessions contained at least one individual with amplification (>2 copies) of the 5-enolypyruvyl-shikimate-3-phosphate synthase (EPSPS) gene, which confers glyphosate resistance; and/or a mutation in the PPX2 gene, either ΔG210 or R128G, which endows PPO-inhibitor resistance in Palmer amaranth. Cluster analysis and high correlation (0.83) between genotypic and phenotypic assays demonstrated that EPSPS gene amplification is the main glyphosate resistance mechanism in Palmer amaranth accessions from southwestern Nebraska. In contrast, there was poor association between genotypic and phenotypic responses for PPO-inhibitor resistance, which was attributed to segregation for PPO-inhibitor resistance within these accessions and/or the methodology that was adopted herein. Genotypic assays can expedite the process of confirming known glyphosate and PPO-inhibitor resistance mechanisms in Palmer amaranth from southwestern Nebraska and other locations. Phenotypic assays are also a robust method for confirming glyphosate resistance but not necessarily PPO-inhibitor resistance in Palmer amaranth. Moreover, random forest analysis of glyphosate resistance in Palmer amaranth indicated that EPSPS gene amplification, county, and current and previous crops are the main factors influencing glyphosate resistance within that geographic area. Most glyphosate-susceptible Palmer amaranth accessions were found in a few counties in areas with high crop diversity. Results presented here confirm the spread of glyphosate resistance and PPO-inhibitor resistance in Palmer amaranth accessions from southwestern Nebraska and demonstrate that less diverse cropping systems are an important driver of herbicide resistance evolution in Palmer amaranth.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Dana B. Harder ◽  
Kelly A. Nelson ◽  
Reid J. Smeda

Repeated use of protox-inhibiting herbicides has resulted in a common waterhemp (Amaranthus rudisSauer) biotype that survived lactofen applied up to 10 times the labeled rate. Field and greenhouse research evaluated control options for this biotype of common waterhemp. In the field, PRE applications of flumioxazin at 72 g ai ha−1, sulfentrazone at 240 g ai ha−1, and isoxaflutole at 70 g ai ha−1controlled common waterhemp >90% up to 6 weeks after treatment. POST applications of fomesafen at 330 g ai ha−1, lactofen at 220 g ai ha−1, and acifluorfen at 420 g ai ha−1resulted in <60% visual control of common waterhemp, but differences were detected among herbicides. In the greenhouse, glyphosate was the only herbicide that controlled protox resistant waterhemp. The majority of herbicide activity from POST flumioxazin, fomesafen, acifluorfen, and lactofen was from foliar placement, but control was less than 40% regardless of placement. Control of common waterhemp seeded at weekly intervals after herbicide treatment with flumioxazin, fomesafen, sulfentrazone, atrazine, and isoxaflutole exceeded 85% at 0 weeks after herbicide application (WAHA), while control with isoxaflutole was greater than 60% 6 WAHA. PRE and POST options for protox-resistant common waterhemp are available to manage herbicide resistance.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Donald C. Thill ◽  
Carol A. Mallory-Smith

Weeds spread through movement of seeds and vegetative reproductive propagules. Pollen movement can spread weedy traits, such as herbicide resistance, between related weed and crop species. Weed seeds can spread short or long distances by natural plant dehiscence mechanisms, wind, water, animals, and man&s activities. This symposium paper is a practical review of short-distance spread of weed seeds in and between nearby arable fields and noncrop lands, examining some of the causes of spread and subsequent effects on crop production. Pollen movement, as it affects the spread of herbicide resistance, also is considered a component of short-distance weed spread. Specific weed management options can be used to reduce man-caused weed seed spread within and between nearby fields, thus reducing potential crop yield losses. Long-term management will be more difficult for weed seed spread by natural dispersal mechanisms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chun Liu ◽  
Lucy V. Jackson ◽  
Sarah-Jane Hutchings ◽  
Daniel Tuesca ◽  
Raul Moreno ◽  
...  

AbstractAgricultural weeds can adapt rapidly to human activities as exemplified by the evolution of resistance to herbicides. Despite its multi-faceted nature, herbicide resistance has rarely been researched in a holistic manner. A novel approach combining timely resistance confirmation, investigation of resistance mechanisms, alternative control solutions and population modelling was adopted for the sustainable management of the Amaranthus palmeri weed in soybean production systems in Argentina. Here, we show that resistance to glyphosate in the studied population from Cordoba province was mainly due to a P106S target-site mutation in the 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) gene, with minor contributions from EPSPS gene duplication/overexpression. Alternative herbicides, such as fomesafen, effectively controlled the glyphosate-resistant plants. Model simulations revealed the tendency of a solo herbicidal input to primarily select for a single resistance mechanism and suggested that residual herbicides, alongside chemical diversity, were important for the sustainable use of these herbicides. We also discuss the value of an interdisciplinary approach for improved understanding of evolving weeds.


2020 ◽  
pp. 1-7
Author(s):  
Jacob S. Montgomery ◽  
Darci A. Giacomini ◽  
Patrick J. Tranel

Abstract During the 2017 to 2019 growing seasons, samples of waterhemp and Palmer amaranth that had reportedly survived field-rate applications of protoporphyrinogen oxidase (PPO)–inhibiting herbicides were collected from the American Midwest and tested for target-site mutations known at the time to confer resistance. Target-site resistance was identified in nearly all (135 of 145) tested common waterhemp populations but in only 8 of 13 Palmer amaranth populations. Follow-up research on one population of Palmer amaranth (W-8), which tested negative for all such mutations, confirmed it was resistant to lactofen, with a magnitude of resistance comparable to that conferred by the ΔG210 PPO2 mutation. Gene sequences from both isoforms of PPO (PPO1 and PPO2) were compared between W-8 and known PPO inhibitor–sensitive sequence. A glycine-to-alanine substitution at the 399th amino acid position (G399A) of PPO2, recently identified to reduce target-site herbicide sensitivity, was observed in a subset of resistant W-8 plants. Because no missense mutation completely delimited resistant and sensitive sequences, we initially suspected the presence of a secondary, non-target-site resistance mechanism in this population. To isolate G399A, a segregating F2 population was produced and screened with a delimiting rate of lactofen. χ2 goodness-of-fit analysis of dead/alive ratings indicated single-locus inheritance of resistance in the F2 population, and molecular markers for the W-8 parental PPO2 coding region co-segregated tightly, but not perfectly, with resistance. More research is needed to fully characterize Palmer amaranth PPO inhibitor–resistance mechanisms, which appear to be more diverse than those found in common waterhemp.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2011 ◽  
Vol 150 (6) ◽  
pp. 717-724 ◽  
Author(s):  
M. V. BAGAVATHIANNAN ◽  
J. K. NORSWORTHY ◽  
K. L. SMITH ◽  
P. NEVE

SUMMARYThe spread of herbicide resistance in barnyardgrass (Echinochloa crus-galli(L.) Beauv.) poses a serious threat to crop production in the southern United States. A thorough knowledge of the biology of barnyardgrass is fundamental for designing effective resistance-management programmes. In the present study, seed production of barnyardgrass in response to time of emergence was investigated in cotton and rice, respectively, in Fayetteville and Rohwer, Arkansas, over a 2-year period (2008–09). Barnyardgrass seed production was greater when seedlings emerged with the crop, but some seed production was observed even if seedlings emerged several weeks after crop emergence. Moreover, barnyardgrass seed production was highly variable across environments. When emerging with the crop (0 weeks after crop emergence (WAE)), barnyardgrass producedc. 35 500 and 16 500 seeds/plant in cotton, andc. 39 000 and 2900 seeds/plant in rice, in 2008 and 2009, respectively. Seed production was observed when seedlings emerged up to 5 WAE (2008) or 7 WAE (2009) in cotton and up to 5 WAE (2008, 2009) in rice; corresponding seed production wasc. 2500 and 1500 seeds/plant in cotton, andc. 14 700 and 110 seeds/plant in rice, in 2008 and 2009, respectively. The results suggest that cultural approaches that delay the emergence of barnyardgrass or approaches that make the associated crop more competitive will be useful in integrated management programmes. In the context of herbicide resistance management, it may be valuable to prevent seed return to the seedbank, irrespective of cohorts. The findings are vital for parameterizing herbicide resistance simulation models for barnyardgrass.


Sign in / Sign up

Export Citation Format

Share Document