scholarly journals Proteins as Sustainable Building Blocks for the Next Generation of Bioinorganic Nanomaterials

Biochemistry ◽  
2018 ◽  
Vol 58 (3) ◽  
pp. 140-141 ◽  
Author(s):  
Marcel Lach ◽  
Matthias Künzle ◽  
Tobias Beck
2020 ◽  
Author(s):  
Israa Bu Najmah ◽  
Nicholas Lundquist ◽  
Melissa K. Stanfield ◽  
Filip Stojcevski ◽  
Jonathan A. Campbell ◽  
...  

An insulating composite was made from the sustainable building blocks wool, sulfur, and canola oil. In the first stage of the synthesis, inverse vulcanization was used to make a polysulfide polymer from the canola oil triglyceride and sulfur. This polymerization benefits from complete atom economy. In the second stage, the powdered polymer is mixed with wool, coating the fibers through electrostatic attraction. The polymer and wool mixture is then compressed with mild heating to provoke S-S metathesis in the polymer, which locks the wool in the polymer matrix. The wool fibers impart tensile strength, insulating properties, and flame resistance to the composite. All building blocks are sustainable or derived from waste and the composite is a promising lead on next-generation insulation for energy conservation.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1223-C1223
Author(s):  
Jason Benedict ◽  
Ian Walton ◽  
Dan Patel ◽  
Jordan Cox

Metal-organic Frameworks (MOFs) remain an extremely active area of research given the wide variety of potential applications and the enormous diversity of structures that can be created from their constituent building blocks. While MOFs are typically employed as passive materials, next-generation materials will exhibit structural and/or electronic changes in response to applied external stimuli including light, charge, and pH. Herein we present recent results in which advanced photochromic diarylethenes are combined with MOFs through covalent and non-covalent methods to create photo-responsive permanently porous crystalline materials. This presentation will describe the design, synthesis, and characterization of next-generation photo-switchable diarylethene based ligands which are subsequently used to photo-responsive MOFs. These UBMOF crystals are, by design, isostructural with previously reported non-photoresponsive frameworks which enables a systematic comparison of their physical and chemical properties. While the photoswitching of the isolated ligand in solution is fully reversible, the cycloreversion reaction is suppressed in the UBMOF single crystalline phase. Spectroscopic evidence for thermally induced cycloreversion will be presented, as well as a detailed analysis addressing the limits of X-ray diffraction techniques applied to these systems.


Author(s):  
Duarte Nuno Carvalho ◽  
Ana Rita Inácio ◽  
Rita O. Sousa ◽  
Rui L. Reis ◽  
Tiago H. Silva

2011 ◽  
Vol 1337 ◽  
Author(s):  
Roland Rosezin ◽  
Eike Linn ◽  
Lutz Nielen ◽  
Carsten Kügeler ◽  
Rainer Bruchhaus ◽  
...  

ABSTRACTIn this report, the fabrication and electrical characterization of fully vertically integrated complementary resistive switches (CRS), which consist of two anti-serially connected Cu-SiO2 memristive elements, is presented. The resulting CRS cells are initialized by a simple procedure and show high uniformity of resistance states afterwards. Furthermore, the CRS cells show high switching speeds below 50 ns, making them excellent building blocks for next generation non-volatile memory based on passive nanocrossbar arrays.


2015 ◽  
Vol 3 (31) ◽  
pp. 8024-8029 ◽  
Author(s):  
Zhaoguang Li ◽  
Ji Zhang ◽  
Kai Zhang ◽  
Weifeng Zhang ◽  
Lei Guo ◽  
...  

Naphtho[2,1-b:3,4-b′]bisthieno[3,2-b][1]benzothiophene derivatives exhibiting a hole mobility of up to 0.25 cm2 V−1 s−1 show promise as useful building blocks to construct next-generation high performance organic semiconductors.


2020 ◽  
Author(s):  
W. Clifford Boldridge ◽  
Ajasja Ljubetič ◽  
Hwangbeom Kim ◽  
Nathan Lubock ◽  
Dániel Szilágyi ◽  
...  

AbstractMyriad biological functions require protein-protein interactions (PPIs), and engineered PPIs are crucial for applications ranging from drug design to synthetic cell circuits. Understanding and engineering specificity in PPIs is particularly challenging as subtle sequence changes can drastically alter specificity. Coiled-coils are small protein domains that have long served as a simple model for studying the sequence-determinants of specificity and have been used as modular building blocks to build large protein nanostructures and synthetic circuits. Despite their simple rules and long-time use, building large sets of well-behaved orthogonal pairs that can be used together is still challenging because predictions are often inaccurate, and, as the library size increases, it becomes difficult to test predictions at scale. To address these problems, we first developed a method called the Next-Generation Bacterial Two-Hybrid (NGB2H), which combines gene synthesis, a bacterial two-hybrid assay, and a high-throughput next-generation sequencing readout, allowing rapid exploration of interactions of programmed protein libraries in a quantitative and scalable way. After validating the NGB2H system on previously characterized libraries, we designed, built, and tested large sets of orthogonal synthetic coiled-coils. In an iterative set of experiments, we assayed more than 8,000 PPIs, used the dataset to train a novel linear model-based coiled-coil scoring algorithm, and then characterized nearly 18,000 interactions to identify the largest set of orthogonal PPIs to date with twenty-two on-target interactions.


Author(s):  
Christopher Hoover ◽  
Brian Watson ◽  
Ratnesh Sharma ◽  
Sue Charles ◽  
Amip Shah ◽  
...  

In this paper, we describe an integrated design and management approach for building next-generation cities. This approach leverages IT technology in both the design and operational phases to optimize sustainability over a broad set of metrics while lowering costs. We call this approach a Sustainable IT Ecosystem. Our approach is based on five principles: ecosystem-scale life-cycle design; scalable and configurable infrastructure building blocks; pervasive sensing; data analytics and visualization; and autonomous control. Application of the approach is demonstrated for two case studies: an urban water infrastructure and an urban power microgrid. We conclude by discussing future opportunities to co-design and integrate these independent infrastructures, gaining further efficiencies.


Sign in / Sign up

Export Citation Format

Share Document