scholarly journals Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights

2021 ◽  
Vol 33 (7) ◽  
pp. 2387-2397
Author(s):  
Alasdair A. M. Brown ◽  
Parth Vashishtha ◽  
Thomas J. N. Hooper ◽  
Yan Fong Ng ◽  
Gautam V. Nutan ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabh Dixit ◽  
Nihar Ranjan Sahoo ◽  
Abhishek Mall ◽  
Anshuman Kumar

AbstractMid-infrared (IR) spectral region is of immense importance for astronomy, medical diagnosis, security and imaging due to the existence of the vibrational modes of many important molecules in this spectral range. Therefore, there is a particular interest in miniaturization and integration of IR optical components. To this end, 2D van der Waals (vdW) crystals have shown great potential owing to their ease of integration with other optoelectronic platforms and room temperature operation. Recently, 2D vdW crystals of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2 \hbox {O}_5$$ V 2 O 5 have been shown to possess the unique phenomenon of natural in-plane biaxial hyperbolicity in the mid-infrared frequency regime at room temperature. Here, we report a unique application of this in-plane hyperbolicity for designing highly efficient, lithography free and extremely subwavelength mid-IR photonic devices for polarization engineering. In particular, we show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 based mid-IR polarizers. Furthermore, we investigate the application of sub-wavelength thin films of these vdW crystals towards engineering the polarization state of incident mid-IR light via precise control of polarization rotation, ellipticity and relative phase. We explain our results using natural in-plane hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 via both analytical and full-wave electromagnetic simulations. This work provides a lithography free alternative for miniaturized mid-infrared photonic devices using the hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 .


2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000014-000018 ◽  
Author(s):  
M. Osada ◽  
T. Sasaki

We present a novel procedure for ceramic nanocoating using oxide nanosheet as a building block. A variety of oxide nanosheets (such as Ti1−δO2, MnO2 and perovsites) were synthesized by delaminating appropriate layered precursors into their molecular single sheets. These nanosheets are exceptionally rich in both structural diversity and electronic properties, with potential applications including conductors, semiconductors, insulators, and ferromagnets. Another attractive aspect is that nanosheets can be organized into various nanoarchitectures by applying solution-based synthetic techniques involving electrostatic layer-by-layer assembly and Langmuir-Blodgett deposition. It is even possible to tailor superlattice assemblies, incorporating into the nanosheet galleries with a wide range of materials such as organic molecules, polymers, and inorganic/metal nanoparticles. Sophisticated functionalities or paper-like devices can be designed through the selection of nanosheets and combining materials, and precise control over their arrangement at the molecular scale.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000410-000413
Author(s):  
David J Rasmussen

Microelectronics used in automotive applications have grown considerably in the last few years with more high tech electronics controlling more functions in automobiles. In an effort to have more precise control and to reduce vehicle weight manufacturers are integrating more functions into smaller packages. Many of these packages are embedded in molded plastic. This causes challenges when it comes to wirebonding these devices. They often cannot be heated to traditional Gold Ball Thermosonic wirebonding temperatures of 120 – 150C. However, using a heated capillary to bond the parts which remain at room temperature simplifies the process considerably. Alternatives such as pre-heating the parts in an oven and complex hot gas handler systems are not required. With a resistive wire coil heater surrounding a standard (or long capillary for deep access) sufficient heat can be provided to the wire bond site for a strong and reliable interconnect. The bonding surface can be any material used in gold ball bonding: aluminum bond pads on die, plated contacts, ceramic substrates or plated copper traces on PCBs. This paper will show that this heated tool process has been successfully utilized with 1mil Au wire and many of the standard die and substrate materials with little impact on process parameters.


Science ◽  
1999 ◽  
Vol 283 (5404) ◽  
pp. 958-960 ◽  
Author(s):  
S. Mintova ◽  
N. H. Olson ◽  
V. Valtchev ◽  
T. Bein

2013 ◽  
Vol 582 ◽  
pp. 210-213 ◽  
Author(s):  
Junichi Hamagami ◽  
Ryo Araki ◽  
Shohei Onimaru ◽  
G. Kawamura ◽  
Atsunori Matsuda

We reported that titania ceramic coating loaded with palladium catalyst worked as an optical hydrogen gas sensor at room temperature. The palladium metal of this sensor worked as a catalyst not only for room-temperature operation but also for high selectivity to hydrogen gas. Precise control of metal/ceramic interface between the titania and the palladium was very important in order to improve the sensor performance such as sensitivity, response time, recovery time. Influence of a difference in palladium-catalyst loading method (photodeposition and sputtering) on the optical hydrogen gas sensing properties for the titania-based sensor was investigated. It was found that the catalytic loading process significantly affected the optical hydrogen characteristics of the titania-based coating.


Author(s):  
V. G. Pushkar ◽  
K. A. Rotov ◽  
I. V. Novitskaya ◽  
E. A. Snatenkov

The conditions of lyophilization of nanoliposomes with encapsulated gentamicin (liposomal gentamicin) were studied. A mode of its safe lyophilization was suggested. A program for eliminating adverse factors was developed. It includes smooth increase of temperature from -70°C (freezing temperature) to room temperature (22±2)°C and gradual reduction of vacuum from 30 to 10 Pa without jumps and drops. The characteristics of the labile nanoliposomal drugs were not lost. The suggested program consisted of 10 steps allowing computer control to attain a slow and uniform increase in the temperature of the frozen product. The precise control of pressure in the chamber was provided by a system of automatic regulation of vacuum supplied with the equipment. After the rehydration the lyophilized preparations completely restored their original shape and properties.


2019 ◽  
Vol 116 (3) ◽  
pp. 765-770 ◽  
Author(s):  
Nian Liu ◽  
Guangmin Zhou ◽  
Ankun Yang ◽  
Xiaoyun Yu ◽  
Feifei Shi ◽  
...  

Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur’s melting point (Tm = 115 °C), with fractional supercooling change (Tm − Tsc)/Tm larger than 0.40. In operando light microscopy captured the rapid merging and shape relaxation of sulfur droplets, indicating their liquid nature. Micropatterned electrode and electrochemical current allow precise control of the location and size of supercooled microdroplets, respectively. Using this platform, we initiated and observed the rapid solidification of supercooled sulfur microdroplets upon crystalline sulfur touching, which confirms supercooled sulfur’s metastability at room temperature. In addition, the formation of liquid sulfur in electrochemical cell enriches lithium-sulfur-electrolyte phase diagram and potentially may create new opportunities for high-energy Li-S batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2390
Author(s):  
Wenqiang Deng ◽  
Ting Fan ◽  
Jiantao Lü ◽  
Jingling Li ◽  
Tingting Deng ◽  
...  

CsPbClxBr3-x nanocrystals were prepared by ligand-assisted deposition at room temperature, and their wavelength was accurately adjusted by doping TbCl3. The synthesized nanocrystals were monoclinic and the morphology was almost unchanged after doping. The fluorescence emission of CsPbClxBr3-x nanocrystals was easily controlled from green to blue by adjusting the amount of TbCl3, which realizes the continuous and accurate spectral regulation in the range of green to blue. This method provides a new scheme for fast anion exchange of all-inorganic perovskite nanocrystals in an open environment at room temperature.


Sign in / Sign up

Export Citation Format

Share Document