Gold Ball Wire Bonding with Heated Tool for Automotive Microelectronics

2012 ◽  
Vol 2012 (1) ◽  
pp. 000410-000413
Author(s):  
David J Rasmussen

Microelectronics used in automotive applications have grown considerably in the last few years with more high tech electronics controlling more functions in automobiles. In an effort to have more precise control and to reduce vehicle weight manufacturers are integrating more functions into smaller packages. Many of these packages are embedded in molded plastic. This causes challenges when it comes to wirebonding these devices. They often cannot be heated to traditional Gold Ball Thermosonic wirebonding temperatures of 120 – 150C. However, using a heated capillary to bond the parts which remain at room temperature simplifies the process considerably. Alternatives such as pre-heating the parts in an oven and complex hot gas handler systems are not required. With a resistive wire coil heater surrounding a standard (or long capillary for deep access) sufficient heat can be provided to the wire bond site for a strong and reliable interconnect. The bonding surface can be any material used in gold ball bonding: aluminum bond pads on die, plated contacts, ceramic substrates or plated copper traces on PCBs. This paper will show that this heated tool process has been successfully utilized with 1mil Au wire and many of the standard die and substrate materials with little impact on process parameters.

2021 ◽  
Vol 33 (7) ◽  
pp. 2387-2397
Author(s):  
Alasdair A. M. Brown ◽  
Parth Vashishtha ◽  
Thomas J. N. Hooper ◽  
Yan Fong Ng ◽  
Gautam V. Nutan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabh Dixit ◽  
Nihar Ranjan Sahoo ◽  
Abhishek Mall ◽  
Anshuman Kumar

AbstractMid-infrared (IR) spectral region is of immense importance for astronomy, medical diagnosis, security and imaging due to the existence of the vibrational modes of many important molecules in this spectral range. Therefore, there is a particular interest in miniaturization and integration of IR optical components. To this end, 2D van der Waals (vdW) crystals have shown great potential owing to their ease of integration with other optoelectronic platforms and room temperature operation. Recently, 2D vdW crystals of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2 \hbox {O}_5$$ V 2 O 5 have been shown to possess the unique phenomenon of natural in-plane biaxial hyperbolicity in the mid-infrared frequency regime at room temperature. Here, we report a unique application of this in-plane hyperbolicity for designing highly efficient, lithography free and extremely subwavelength mid-IR photonic devices for polarization engineering. In particular, we show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 based mid-IR polarizers. Furthermore, we investigate the application of sub-wavelength thin films of these vdW crystals towards engineering the polarization state of incident mid-IR light via precise control of polarization rotation, ellipticity and relative phase. We explain our results using natural in-plane hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 via both analytical and full-wave electromagnetic simulations. This work provides a lithography free alternative for miniaturized mid-infrared photonic devices using the hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 .


2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000014-000018 ◽  
Author(s):  
M. Osada ◽  
T. Sasaki

We present a novel procedure for ceramic nanocoating using oxide nanosheet as a building block. A variety of oxide nanosheets (such as Ti1−δO2, MnO2 and perovsites) were synthesized by delaminating appropriate layered precursors into their molecular single sheets. These nanosheets are exceptionally rich in both structural diversity and electronic properties, with potential applications including conductors, semiconductors, insulators, and ferromagnets. Another attractive aspect is that nanosheets can be organized into various nanoarchitectures by applying solution-based synthetic techniques involving electrostatic layer-by-layer assembly and Langmuir-Blodgett deposition. It is even possible to tailor superlattice assemblies, incorporating into the nanosheet galleries with a wide range of materials such as organic molecules, polymers, and inorganic/metal nanoparticles. Sophisticated functionalities or paper-like devices can be designed through the selection of nanosheets and combining materials, and precise control over their arrangement at the molecular scale.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000432-000437 ◽  
Author(s):  
Michael David Hook ◽  
Michael Mayer ◽  
Stevan Hunter

Abstract Reliability of wire bonds made with palladium-coated copper (PCC) wire of 25 μm diameter is studied by measuring the wire bond resistance increase over time in high temperature storage at 225 °C. Ball bonds are made on two bond pad thicknesses and tested with and without mold compound encapsulation. Bond pads are aluminum copper (Al-0.5%Cu), 800 nm and 3000 nm thick. The wirebonding pattern is arranged to facilitate 4-wire resistance measurements of 12 bond pairs in each 28-pin ceramic test package. The ball bonding recipe is optimized to minimize splash on 3000 nm Al-0.5%Cu with shear strength at least 120 MPa. Ball bond diameter is 61 μm and height is 14 μm. Measurements include bond shear test data and in-situ resistance before and during high temperature storage. Bonds on 3000 nm pads are found to be significantly more reliable than bonds on 800 nm pads within 140 h of aging.


1998 ◽  
Vol 27 (11) ◽  
pp. 1211-1215 ◽  
Author(s):  
J. E. Krzanowski ◽  
E. Razon ◽  
A. F. Hmiel

2005 ◽  
Vol 287 ◽  
pp. 177-182 ◽  
Author(s):  
Sung Sic Hwang ◽  
Sang Whan Park ◽  
Jun Hyun Han ◽  
T.W. Kim

In this study, the reaction-bonded SiC (RBSC) hot gas filter was newly developed using Si melt infiltration technique. Si melt was infiltrated into the green body through the carbon source coated surface of SiC powder forming strong neck phases between SiC powders. The maximum flexural strength of porous RBSC support at room temperature and at 900 oC were about 80 MPa and 63 MPa, respectively, which were much higher than those of commercially available porous clay-bonded SiC with similar pore size and porosity.


2013 ◽  
Vol 582 ◽  
pp. 210-213 ◽  
Author(s):  
Junichi Hamagami ◽  
Ryo Araki ◽  
Shohei Onimaru ◽  
G. Kawamura ◽  
Atsunori Matsuda

We reported that titania ceramic coating loaded with palladium catalyst worked as an optical hydrogen gas sensor at room temperature. The palladium metal of this sensor worked as a catalyst not only for room-temperature operation but also for high selectivity to hydrogen gas. Precise control of metal/ceramic interface between the titania and the palladium was very important in order to improve the sensor performance such as sensitivity, response time, recovery time. Influence of a difference in palladium-catalyst loading method (photodeposition and sputtering) on the optical hydrogen gas sensing properties for the titania-based sensor was investigated. It was found that the catalytic loading process significantly affected the optical hydrogen characteristics of the titania-based coating.


1984 ◽  
Vol 106 (4) ◽  
pp. 735-742 ◽  
Author(s):  
Y. Yamada ◽  
M. Akai ◽  
Y. Mori

The heat transfer performance of a crossflow shell-and-tube heat exchanger for high-temperature use in which heat transfer is augmented by the use of wall radiation in both shell and tube sides, is studied. Radiation plates are inserted in the shell side, and twisted cross-tapes in the tube side. Overall heat transfer coefficients are measured to be about a maximum 80 percent larger than those without radiation, where the inlet temperatures of the hot gas range up to 800 °C, while those of the cold gas are about room temperature. Analytical results agree well with experimental results, and an approximate calculation procedure is found to be simple and accurate enough for practical use.


2021 ◽  
Vol 0 (1) ◽  
pp. 23-27
Author(s):  
I. S. Nefyolov ◽  
◽  
N. I. Baurova ◽  

The effect of negative temperatures on strength characteristics of plastic component joints (hot gas welding, gluing, 3D-welding) made with the use of additive technologies has been examined. It has been found out that 3D-wlding allows one to produce joints with the highest strength properties. It was shown that low temperature values (–30 °С) did not have the negative influence on strength properties of ABS-plastic joints but even increased them as compared with analogues samples tested at the room temperature.


Sign in / Sign up

Export Citation Format

Share Document