Identification of Potent and Long-Acting Single-Chain Peptide Mimetics of Human Relaxin-2 for Cardiovascular Diseases

2021 ◽  
Vol 64 (4) ◽  
pp. 2139-2150
Author(s):  
Sergio Mallart ◽  
Raffaele Ingenito ◽  
Elisabetta Bianchi ◽  
Alberto Bresciani ◽  
Simone Esposito ◽  
...  
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-8-SCI-8 ◽  
Author(s):  
Peter J Lenting ◽  
Vincent Muczynski ◽  
Gabriel Aymé ◽  
Cecile V. Denis ◽  
Olivier D. Christophe

Abstract Coagulation factor VIII (FVIII) and von Willebrand factor (VWF) both play a centrol role in hemostasis, illustrated by the severe bleeding disorders associated with their functional absence. Despite their different functionalities in hemostasis and being products from two different genes, both proteins circulate in a tight, non-covalently linked complex. The physiological concequences of complex formation are many, including stabilization of FVIII heterodimeric structure, protection of FVIII from protelytic degradation, and modulation of FVIII immunogenicity. Another relevant issue relates to the chaperone function of VWF, allowing FVIII to survive in the circulation. FVIII levels are markedly reduced in patients with no detectable VWF protein or with a defect in VWF-FVIII complex formation, indicating that VWF prevents FVIII from premature clearance. Moreover, evidence points to FVIII actually being predominantly cleared as part of the VWF-FVIII complex rather than as a separate protein. First, it is possible to predict FVIII half-life fairly accurately by knowing antigen levels of VWF and its propeptide in combination with blood group. Second, when FVIII and VWF are co-injected in Vwf-deficient mice, FVIII is targeted to the same macrophages as is VWF. Since the end of the 1990s, our knowledge on the clearance mechanism of FVIII and VWF has started to emerge, and multiple clearance receptors for both proteins have now been identified. Interestingly, there exists a large overlap in receptor-repertoire between FVIII and VWF. These findings have taught us that it will be difficult to design single-mutant FVIII or VWF variants that have prolonged half-lives. How then to prolong the half-life of FVIII to improve treatment of hemophilia A? Several novel bioengineered FVIII variants have been developed, including PEGylation, Fc fusion and single-chain design, aiming to increase FVIII half-life. These approaches have so far achieved only moderate increases in half-life (1.5- to 2-fold compared to marketed FVIII products), significantly less than when similar modifications are being applied to factor IX. Indeed, it seems as if in designing these FVIII variants, the role of the significant other in the complex has been overlooked, since FVIII clearance is principally determined by VWF. Could we instead use VWF as a tool to prolong half-life of FVIII? This option is actually limited by the nature of the interaction between VWF and FVIII. Although of high affinity, the interaction is characterized by high association- and dissociation-rates. Infusing FVIII in combination with long-acting VWF variants will therefore result in a rapid redistribution of FVIII to endogenous VWF, as has elegantly been shown by the group of Ginsburg. To overcome this limitation, we have designed a FVIII variant (FVIII-KB013bv) in which we have replaced the B-domain by a single-domain, llama-derived antibody fragment (nanobody) that recognizes the D'D3-region of VWF. Consequently, the dissociation-rate of the VWF/FVIII complex is reduced 100-fold. Preliminary studies revealed that FVIII-KB013bv has a two-fold prolonged half-life compared to FVIII, likely due to improved VWF binding properties. Combination of the FVIII-nanobody fusion protein with long-acting VWF variants is anticipated to prolong its half-life well beyond the limit of the current long-acting FVIII variants. Disclosures Lenting: NovoNordisk: Consultancy, Research Funding.


Author(s):  
A. Beliayeva ◽  
L. Garmanchuk

Cardiovascular diseases are widespread throughout the world. The incidence of diseases of the cardiovascular system has increased several times. Cardiovascular diseases have become the leading cause of death in many countries. Currently, the efforts of many researchers are aimed at studying and creating new, more effective and safe drugs and their combinations for the treatment of pathology of the cardiovascular system. Candesartan cilexetil is an angiotensin II receptor antagonist. It is used medicinally as a long-acting antihypertensive agent. However, this drug has a number of side effects. Resveratrol is a natural antioxidant. This substance exhibits pleiotropic effects, including antioxidant, anti-inflammatory, anti-aging, cardioprotective, and neuroprotective activities. The aim is investigation of acute toxicity of candesartan cilexetil and resveratrol in combination in vivo. Male and female ICR mice were used for the experiment. Animals received candesartan cilexetil and resveratrol intragastrically once. Evaluation of the effects of substances on internal organs (heart, spleen, kidneys, lungs, liver and brain) was carried out in 2 weeks after the introduction of the substances. It was shown that candesartan cilexetil with natural resveratrol did not lead to functional changes. There were no changes of behavior during the observation period. The combination of candesartan cilexetil with resveratrol did not lead to the death of mice, therefore the mean lethal dose (LD50) was not determined. The new combination of substances was safe. No side effects have been reported. The combination of candesartan cilexetil with resveratrol is non-toxic, and the use of these substances is safe for animals.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 597
Author(s):  
Anna Wolska ◽  
Mart Reimund ◽  
Denis O. Sviridov ◽  
Marcelo J. Amar ◽  
Alan T. Remaley

Since the seminal breakthrough of treating diabetic patients with insulin in the 1920s, there has been great interest in developing other proteins and their peptide mimetics as therapies for a wide variety of other medical disorders. Currently, there are at least 60 different peptides that have been approved for human use and over 150 peptides that are in various stages of clinical development. Peptides mimetic of the major proteins on lipoproteins, namely apolipoproteins, have also been developed first as tools for understanding apolipoprotein structure and more recently as potential therapeutics. In this review, we discuss the biochemistry, peptide mimetics design and clinical trials for peptides based on apoA-I, apoE and apoC-II. We primarily focus on applications of peptide mimetics related to cardiovascular diseases. We conclude with a discussion on the limitations of peptides as therapeutic agents and the challenges that need to be overcome before apolipoprotein mimetic peptides can be developed into new drugs.


2018 ◽  
Vol 30 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Avinash Muppidi ◽  
Sang Jun Lee ◽  
Che-Hsiung Hsu ◽  
Huafei Zou ◽  
Candy Lee ◽  
...  

Author(s):  
P. F. Flicker ◽  
V.S. Kulkarni ◽  
J. P. Robinson ◽  
G. Stubbs ◽  
B. R. DasGupta

Botulinum toxin is a potent neurotoxin produced by Clostridium botulinum. The toxin inhibits release of neurotransmitter, causing muscle paralysis. There are several serotypes, A to G, all of molecular weight about 150,000. The protein exists as a single chain or or as two chains, with two disulfide linkages. In a recent investigation on intracellular action of neurotoxins it was reported that type B neurotoxin can inhibit the release of Ca++-activated [3H] norepinephrine only if the disulfide bonds are reduced. In order to investigate possible structural changes in the toxin upon reduction of the disulfide bonds, we have prepared two-dimensional crystals of reduced type B neurotoxin. These two-dimensional crystals will be compared with those of the native (unreduced) type B toxin.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


Sign in / Sign up

Export Citation Format

Share Document