Vitreous State Characterization of Pharmaceutical Compounds Degrading upon Melting by Using Fast Scanning Calorimetry

2015 ◽  
Vol 119 (22) ◽  
pp. 6848-6851 ◽  
Author(s):  
Yohann Corvis ◽  
Andreas Wurm ◽  
Christoph Schick ◽  
Philippe Espeau
Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2017 ◽  
Vol 68 (8) ◽  
pp. 1895-1902
Author(s):  
Ioana Cristina Tita ◽  
Eleonora Marian ◽  
Bogdan Tita ◽  
Claudia Crina Toma ◽  
Laura Vicas

Thermal analysis is one of the most frequently used instrumental techniques in the pharmaceutical research, for the thermal characterization of different materials from solids to semi-solids, which are of pharmaceutical relevance. In this paper, simultaneous thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) were used for characterization of the thermal behaviour of candesartan cilexetil � active substance (C-AS) under dynamic nitrogen atmosphere and nonisothermal conditions, in comparison with pharmaceutical product containing the corresponding active substance. It was observed that the commercial samples showed a different thermal profile than the standard sample, caused by the presence of excipients in the pharmaceutical product and to possible interaction of these with the active substance. The Fourier transformed infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRPD) were used as complementary techniques adequately implement and assist in interpretation of the thermal results. The main conclusion of this comparative study was that the TG/DTG and DSC curves, together with the FT-IR spectra, respectively X-ray difractograms constitute believe data for the discrimination between the pure substance and pharmaceutical forms.


2020 ◽  
Vol 17 (4) ◽  
pp. 303-311
Author(s):  
Roberta Cassano ◽  
Federica Curcio ◽  
Delia Mandracchia ◽  
Adriana Trapani ◽  
Sonia Trombino

Aim: The work’s aim was the preparation and characterization of a hydrogel based on gelatin and glycerine, useful for site-specific release of benzydamine, an anti-inflammatory drug, able to attenuate the inflammatory process typical of the vaginal infection. Objective: The obtained hydrogel has been characterized by Electronic Scanning Microscopy (SEM) and Differential Scanning Calorimetry (DSC). In addition, due to the precursor properties, the hydrogel exhibits a relevant mucoadhesive activity. Methods: The swelling degree was evaluated at two different pHs and at defined time intervals. In particular, phosphate buffers were used at pH 6.6, in order to mimic the typical conditions of infectious diseases at the vaginal level, particularly for HIV-seropositive pregnant women, and pH 4.6, to simulate the physiological environment. Results: The obtained results revealed that the hydrogel swells up well at both pHs. Conclusion: Release studies conducted at both pathological and physiological pHs have shown that benzydamine is released at the level of the vaginal mucosa in a slow and gradual manner. These data support the hypothesis of the hydrogel use for the site-specific release of benzydamine in the vaginal mucosa.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 261
Author(s):  
Adolfo Bucio ◽  
Rosario Moreno-Tovar ◽  
Lauro Bucio ◽  
Jessica Espinosa-Dávila ◽  
Francisco Anguebes-Franceschi

A study on the physical and mechanical properties of beeswax (BW), candelilla wax (CW), paraffin wax (PW) and blends was carried out with the aim to evaluate their usefulness as coatings for cheeses. Waxes were analyzed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), permeability, viscosity, flexural and tensile tests and scanning electron microscopy. Cheeses were coated with the waxes and stored for 5 weeks at 30 °C. Measured parameters were weight, moisture, occurrence and degree of fractures, and dimensional changes. The crystal phases identified by XRD for the three waxes allowed them to determine the length of alkanes and the nonlinear compounds in crystallizable forms in waxes. FTIR spectra showed absorption bands between 1800 and 800 cm−1 related to carbonyls in BW and CW. In DSC, the onset of melting temperature was 45.5 °C for BW, and >54 °C for CW and PW. Cheeses coated with BW did not show cracks after storage. Cheeses coated with CW and PW showed microcraks, and lost weight, moisture and shrunk. In the flexural and tensile tests, BW was ductile; CW and PW were brittle. BW blends with CW or PW displays a semi ductile behavior. Cheeses coated with BW blends lost less than 5% weight during storage. The best waxes were BW and the blends.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1686
Author(s):  
Andrey Galukhin ◽  
Roman Nosov ◽  
Ilya Nikolaev ◽  
Elena Melnikova ◽  
Daut Islamov ◽  
...  

A new rigid tricyanate ester consisting of seven conjugated aromatic units is synthesized, and its structure is confirmed by X-ray analysis. This ester undergoes thermally stimulated polymerization in a liquid state. Conventional and temperature-modulated differential scanning calorimetry techniques are employed to study the polymerization kinetics. A transition of polymerization from a kinetic- to a diffusion-controlled regime is detected. Kinetic analysis is performed by combining isoconversional and model-based computations. It demonstrates that polymerization in the kinetically controlled regime of the present monomer can be described as a quasi-single-step, auto-catalytic, process. The diffusion contribution is parameterized by the Fournier model. Kinetic analysis is complemented by characterization of thermal properties of the corresponding polymerization product by means of thermogravimetric and thermomechanical analyses. Overall, the obtained experimental results are consistent with our hypothesis about the relation between the rigidity and functionality of the cyanate ester monomer, on the one hand, and its reactivity and glass transition temperature of the corresponding polymer, on the other hand.


Sign in / Sign up

Export Citation Format

Share Document