Transcriptomic and Proteomic Data Integration and Two-Dimensional Molecular Maps with Regulatory and Functional Linkages: Application to Cell Proliferation and Invasion Networks in Glioblastoma

2015 ◽  
Vol 14 (12) ◽  
pp. 5017-5027 ◽  
Author(s):  
Manoj Kumar Gupta ◽  
Savita Jayaram ◽  
Divijendra Natha Reddy ◽  
Ravindra Varma Polisetty ◽  
Ravi Sirdeshmukh
BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


2021 ◽  
Vol 30 ◽  
pp. 096368972098607
Author(s):  
Shi-Yuan Liu ◽  
Zhi-Yu Zhao ◽  
Zhe Qiao ◽  
Shao-Min Li ◽  
Wei-Ning Zhang

Long noncoding RNAs (lncRNAs) are increasingly recognized as indispensable components of the regulatory network in the progression of various cancers, including nonsmall cell lung cancer (NSCLC). The lncRNA prostate cancer associated transcript 1 (PCAT1) has been involved in tumorigenesis of multiple malignant solid tumors, but it is largely unknown that what is the role of lncRNA-PCAT1 and how it functions in the progression of lung cancer. Herein, we observed that lncRNA PCAT1 expression was upregulated in both human NSCLC tissues and cell lines, which was determined by qualitative polymerase chain reaction analysis. Then, gain-and loss-of-function manipulations were performed in A549 cells by transfection with a specific short interfering RNA against PCAT1 or a pcDNA-PCAT1 expression vector. The results showed that PCAT1 not only promoted NSCLC cell proliferation and invasion but also inhibited cell apoptosis. Bioinformatics and expression correlation analyses revealed that there was a potential interaction between PCAT1 and the dyskerin pseudouridine synthase 1 (DKC1) protein, an RNA-binding protein. Then, RNA pull-down assays with biotinylated probes and transcripts both confirmed that PCAT1 directly bounds with DKC1 that could also promote NSCLC cell proliferation and invasion and inhibit cell apoptosis. Moreover, the effects of PCAT1 and DKC1 on NSCLC functions are synergistic. Furthermore, PCAT1 and DKC1 activated the vascular endothelial growth factor (VEGF)/protein kinase B (AKT)/Bcl-2/caspase9 pathway in NSCLC cells, and inhibition of epidermal growth factor receptor, AKT, or Bcl-2 could eliminate the effect of PCAT1/DKC1 co-overexpression on NSCLC cell behaviors. In conclusion, lncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion, and apoptosis in NSCLC cells via the VEGF/AKT/Bcl-2/caspase9 pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
pp. 1-9
Author(s):  
Yuxin Li ◽  
Xiaohong Zhuang ◽  
Li Zhuang ◽  
Hongjian Liu

This paper aimed at investigating AS1 expression in prostate cancer (PCa) and its effects on the proliferation and invasion of prostate cancer cells (PCCs). The prostate tissues and the matched adjacent normal prostate tissues excised and preserved during radical prostatectomy in our hospital were collected. The LncRNA NCK1-AS1 expression was detected. PCa patients were followed up for three years to analyze their prognosis. The correlation of LncRNA NCK1-AS1 expression with clinicopathological features was analyzed. Human normal prostate cells and human PCCs were selected, in which LncRNA NCK1-AS1 expression was tested to screen and then transfect the cells. Cell proliferation, invasion and migration were detected. Cell cycles and apoptosis were analyzed. Compared with the adjacent normal tissues, LncRNA NCK1-AS1 was highly expressed in the prostate cancer tissues. Its expression was remarkably different in those with different stages of TNM and with lymphatic metastasis or not. The prognosis of patients with high LncRNA NCK1-AS1 expression was remarkably poorer than that of those with low expression. Compared with the human normal prostate cells, LncRNA NCK1-AS1 expression in the human PCCs remarkably rose, with the greatest difference in 22Rv1 cells. Compared with the Blank group, cell proliferation and the number of plate cloned cells remarkably reduced in the sh-NCK1-AS1 group. Additionally, in this group, the number of invasive and migratory cells remarkably reduced; the expression of invasion-related protein E-cadherin remarkably rose but that of MMP-2 remarkably reduced; cell cycles were arrested and the expression of cycle-related proteins (CDK4, CDK6, cyclin D1) remarkably reduced; the apoptotic rate and the expression of apoptosis-related protein Bax remarkably rose. LncRNA NCK1-AS1 is highly expressed in PCa, so its down-regulation can inhibit PCCs from proliferating and reduce the number of invasive cells.


Sign in / Sign up

Export Citation Format

Share Document