Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses

2021 ◽  
Author(s):  
Kazuki Fukushima ◽  
Kodai Matsuzaki ◽  
Masashi Oji ◽  
Yuji Higuchi ◽  
Go Watanabe ◽  
...  
2018 ◽  
Vol 92 (8) ◽  
pp. e02133-17 ◽  
Author(s):  
Danushka K. Wijesundara ◽  
Jason Gummow ◽  
Yanrui Li ◽  
Wenbo Yu ◽  
Benjamin J. Quah ◽  
...  

ABSTRACTA universal hepatitis C virus (HCV) vaccine should elicit multiantigenic, multigenotypic responses, which are more likely to protect against challenge with the range of genotypes and subtypes circulating in the community. A vaccine cocktail and vaccines encoding consensus HCV sequences are attractive approaches to achieve this goal. Consequently, in a series of mouse vaccination studies, we compared the immunogenicity of a DNA vaccine encoding a consensus HCV nonstructural 5B (NS5B) protein to that of a cocktail of DNA plasmids encoding the genotype 1b (Gt1b) and Gt3a NS5B proteins. To complement this study, we assessed responses to a multiantigenic cocktail regimen by comparing a DNA vaccine cocktail encoding Gt1b and Gt3a NS3, NS4, and NS5B proteins to a single-genotype NS3/4/5B DNA vaccine. To thoroughly evaluatein vivocytotoxic T lymphocyte (CTL) and T helper (Th) cell responses against Gt1b and Gt3a HCV peptide-pulsed target cells, we exploited a novel fluorescent-target array (FTA). FTA and enzyme-linked immunosorbent spot (ELISpot) analyses collectively indicated that the cocktail regimens elicited higher responses to Gt1b and Gt3a NS5B proteins than those with the consensus vaccine, while the multiantigenic DNA cocktail significantly increased the responses to NS3 and NS5B compared to those elicited by the single-genotype vaccines. Thus, a DNA cocktail vaccination regimen is more effective than a consensus vaccine or a monovalent vaccine at increasing the breadth of multigenotypic T cell responses, which has implications for the development of vaccines for communities where multiple HCV genotypes circulate.IMPORTANCEDespite the development of highly effective direct-acting antivirals (DAA), infections with hepatitis C virus (HCV) continue, particularly in countries where the supply of DAA is limited. Furthermore, patients who eliminate the virus as a result of DAA therapy can still be reinfected. Thus, a vaccine for HCV is urgently required, but the heterogeneity of HCV strains makes the development of a universal vaccine difficult. To address this, we developed a novel cytolytic DNA vaccine which elicits robust cell-mediated immunity (CMI) to the nonstructural (NS) proteins in vaccinated animals. We compared the immune responses against genotypes 1 and 3 that were elicited by a consensus DNA vaccine or a DNA vaccine cocktail and showed that the cocktail induced higher levels of CMI to the NS proteins of both genotypes. This study suggests that a universal HCV vaccine can most readily be achieved by use of a DNA vaccine cocktail.


2009 ◽  
Vol 15 ◽  
pp. 70-71 ◽  
Author(s):  
T. Normand ◽  
L. Forest ◽  
L. Chabanne ◽  
S. Richard ◽  
B. Davoust ◽  
...  

2017 ◽  
Vol 5 (10) ◽  
pp. 2056-2067 ◽  
Author(s):  
Sisi Li ◽  
Shreyas Kuddannaya ◽  
Yon Jin Chuah ◽  
Jingnan Bao ◽  
Yilei Zhang ◽  
...  

To decipher specific cell responses to diverse and complex in vivo signals, it is essential to emulate specific surface chemicals, extra cellular matrix (ECM) components and topographical signals through reliable and easily reproducible in vitro systems.


1988 ◽  
Vol 66 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Marilyn J. Mooibroek ◽  
Jerry H. Wang

The adenylate cyclase – cAMP, phospholipase C – IP3 (inositol 1,4,5-triphosphate), and DAG (diacylglycerol) signal transduction systems are used to illustrate general principles underlying the process of information transfer during cell stimulation. Both systems consist of reaction cascades that convert the external signal to an intracellular messenger, translate the messenger to regulatory activities, and then modulate the activities of appropriate cellular proteins to result in specific cell responses. Almost all of these reactions are under second-messenger-dependent regulation, with many being regulated by multiple messengers. Such complex regulation provides ample opportunities for the fine-tuning of the signal cascades and for coordination between cascades during cell stimulation. Specific examples are used to illustrate how the cell uses different intrasystem and intersystem regulatory reactions to achieve specific responses.


2018 ◽  
Vol 93 (6) ◽  
Author(s):  
Lorena F. D. de Freitas ◽  
Rafael P. Oliveira ◽  
Mariana C. G. Miranda ◽  
Raíssa P. Rocha ◽  
Edel F. Barbosa-Stancioli ◽  
...  

ABSTRACTVaccinia virus (VACV) is a notorious virus for a number of scientific reasons; however, most of its notoriety comes from the fact that it was used as a vaccine against smallpox, being ultimately responsible for the eradication of that disease. Nonetheless, many different vaccinia virus strains have been obtained over the years; some are suitable to be used as vaccines, whereas others are virulent and unsuitable for this purpose. Interestingly, different vaccinia virus strains elicit different immune responsesin vivo, and this is a direct result of the genomic differences among strains. In order to evaluate the net result of virus-encoded immune evasion strategies of vaccinia viruses, we compared antiviral immune responses in mice intranasally infected by the highly attenuated and nonreplicative MVA strain, the attenuated and replicative Lister strain, or the virulent WR strain. Overall, cell responses elicited upon WR infections are downmodulated compared to those elicited by MVA and Lister infections, especially in determined cell compartments such as macrophages/monocytes and CD4+T cells. CD4+T cells are not only diminished in WR-infected mice but also less activated, as evaluated by the expression of costimulatory molecules such as CD25, CD212, and CD28 and by the production of cytokines, including tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), interleukin-4 (IL-4), and IL-10. On the other hand, MVA infections are able to induce strong T-cell responses in mice, whereas Lister infections consistently induced responses that were intermediary between those induced by WR and MVA. Together, our results support a model in which the virulence of a VACV strain is proportional to its potential to downmodulate the host’s immune responses.IMPORTANCEVaccinia virus was used as vaccine against smallpox and was instrumental in the successful eradication of that disease. Although smallpox vaccination is no longer in place in the overall population, the use of vaccinia virus in the development of viral vector-based vaccines has become popular. Nonetheless, different vaccinia virus strains are known and induce different immune responses. To look into this, we compared immune responses triggered by mouse infections with the nonreplicative MVA strain, the attenuated Lister strain, or the virulent WR strain. We observed that the WR strain was capable of downmodulating mouse cell responses, whereas the highly attenuated MVA strain induced high levels of cell-mediated immunity. Infections by the intermediately attenuated Lister strain induced cell responses that were intermediary between those induced by WR and MVA. We propose that the virulence of a vaccinia virus strain is directly proportional to its ability to downmodulate specific compartments of antiviral cell responses.


2015 ◽  
Vol 3 (8) ◽  
pp. 1612-1623 ◽  
Author(s):  
Shichang Zhao ◽  
Jianhua Zhang ◽  
Min Zhu ◽  
Yadong Zhang ◽  
Zhongtang Liu ◽  
...  

Functionalization of biomaterials with specific functional groups is one of the most straightforward strategies to induce specific cell responses to biomaterials.


2010 ◽  
Vol 17 (7) ◽  
pp. 1124-1131 ◽  
Author(s):  
Said Aboud ◽  
Charlotta Nilsson ◽  
Katarina Karlén ◽  
Mary Marovich ◽  
Britta Wahren ◽  
...  

ABSTRACT We investigated HIV-1 vaccine-induced lymphoproliferative responses in healthy volunteers immunized intradermally or intramuscularly (with or without adjuvant granulocyte-macrophage colony-stimulating factor [GM-CSF] protein) with DNA expressing HIV-1 gag, env, rev, and rt at months 0, 1, and 3 using a Biojector and boosted at 9 months with modified vaccinia virus Ankara (MVA) expressing heterologous HIV-1 gag, env, and pol (HIV-MVA). Lymphoproliferative responses to aldrithiol-2 (AT-2)-inactivated-HIV-1 antigen were tested by a [3H]thymidine uptake assay and a flow-cytometric assay of specific cell-mediated immune response in activated whole blood (FASCIA-WB) 2 weeks after the HIV-MVA boost (n = 38). A FASCIA using peripheral blood mononuclear cells (FASCIA-PBMC) was also employed (n = 14). Thirty-five of 38 (92%) vaccinees were reactive by the [3H]thymidine uptake assay. Thirty-two of 38 (84%) vaccinees were reactive by the CD4+ T-cell FASCIA-WB, and 7 of 38 (18%) also exhibited CD8+ T-cell responses. There was strong correlation between the proliferative responses measured by the [3H]thymidine uptake assay and CD4+ T-cell FASCIA-WB (r = 0.68; P < 0.01). Fourteen vaccinees were analyzed using all three assays. Ten of 14 (71%) and 11/14 (79%) demonstrated CD4+ T-cell responses in FASCIA-WB and FASCIA-PBMC, respectively. CD8+ T-cell reactivity was observed in 3/14 (21%) and 7/14 (50%) using the FASCIA-WB and FASCIA-PBMC, respectively. All 14 were reactive by the [3H]thymidine uptake assay. The overall HIV-specific T-cell proliferative response in the vaccinees employing any of the assays was 100% (38/38). A standardized FASCIA-PBMC, which allows simultaneous phenotyping, may be an option to the [3H]thymidine uptake assay for assessment of vaccine-induced T-cell proliferation, especially in isotope-restricted settings.


2013 ◽  
Vol 93 (1) ◽  
pp. 269-309 ◽  
Author(s):  
Jacqueline Cherfils ◽  
Mahel Zeghouf

Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 22-26 ◽  
Author(s):  
Kenneth James ◽  
Joachim Kohn

The success of tissue engineering rests on the ability to direct specific cell types to multiply, migrate, and express normal physiologic behaviors in order to yield a cellular organization that performs the functions of the desired tissue. For example the engineering of living bone to repair skeletal defects has focused on growing osteoblasts—the cells responsible for bone formation—on degradable polymer matrices in vitro. The polymer matrix initially serves as the scaffold for bone-cell proliferation and maturation. Ideally the cells form a bonelike tissue that after implantation is fully integrated into the patient's own bone, thus repairing the bone injury or defect. Soon thereafter, its function complete, the polymer scaffold resorbs away. Readily apparent is the crucial role the scaffold material occupies in tissue engineering since it serves as the template for cell growth and tissue formation. It is the interaction between the cell and the material that dictates whether the cells will proliferate, mature, and express the desired tissue characteristics.A critical issue facing the biomedical industry today is the availability of raw materials for medical-device manufacture. Furthermore it is now recognized that the materials base of the medical-device industry is outdated. Metals and various industrial plastics (e.g., polysiloxanes, polyurethanes, Dacron®, Teflon®, polyethylene) are the most commonly used biomaterials. These biostable, synthetic implant materials lack the biological sequences and patterns crucial to normal cell function and can trigger aberrant cell responses. Likewise few degradable polymers are available to the medical-device designer and tissue engineer, representing another limitation of the materials base of the medical-device industry (Table I).


2015 ◽  
Vol 12 (105) ◽  
pp. 20141403 ◽  
Author(s):  
Peter A. Appleby ◽  
Saqib Shabir ◽  
Jennifer Southgate ◽  
Dawn Walker

Epithelial tissue structure is the emergent outcome of the interactions between large numbers of individual cells. Experimental cell biology offers an important tool to unravel these complex interactions, but current methods of analysis tend to be limited to mean field approaches or representation by selected subsets of cells. This may result in bias towards cells that respond in a particular way and/or neglect local, context-specific cell responses. Here, an automated algorithm was applied to examine in detail the individual calcium transients evoked in genetically homogeneous, but asynchronous populations of cultured non-immortalized normal human urothelial cells when subjected to either the global application of an external agonist or a localized scratch wound. The recorded calcium transients were classified automatically according to a set of defined metrics and distinct sub-populations of cells that responded in qualitatively different ways were observed. The nature of this variability in the homogeneous cell population was apportioned to two sources: intrinsic variation in individual cell responses and extrinsic variability due to context-specific factors of the environment, such as spatial heterogeneity. Statistically significant variation in the features of the calcium transients evoked by scratch wounding according to proximity to the wound edge was identified. The manifestation of distinct sub-populations of cells is considered central to the coordination of population-level response resulting in wound closure.


Sign in / Sign up

Export Citation Format

Share Document