Selection of Insulating Elastomers for High-Performance Intrinsically Stretchable Transistors

Author(s):  
Hang Ren ◽  
Junmo Zhang ◽  
Yanhong Tong ◽  
Mingxin Zhang ◽  
Xiaoli Zhao ◽  
...  
Solar RRL ◽  
2021 ◽  
pp. 2100450
Author(s):  
Bing-Huang Jiang ◽  
Yi-Peng Wang ◽  
Yu-Wei Su ◽  
Jia-Fu Chang ◽  
Chu-Chen Chueh ◽  
...  

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Nur Izzah Nabilah Haris ◽  
Shafreeza Sobri ◽  
Yus Aniza Yusof ◽  
Nur Kartinee Kassim

Molecular dynamics (MD) simulation is a powerful tool to study the molecular level working mechanism of corrosion inhibitors in mitigating corrosion. In the past decades, MD simulation has emerged as an instrument to investigate the interactions at the interface between the inhibitor molecule and the metal surface. Combined with experimental measurement, theoretical examination from MD simulation delivers useful information on the adsorption ability and orientation of the molecule on the surface. It relates the microscopic characteristics to the macroscopic properties which enables researchers to develop high performance inhibitors. Although there has been vast growth in the number of studies that use molecular dynamic evaluation, there is still lack of comprehensive review specifically for corrosion inhibition of organic inhibitors on ferrous metal in acidic solution. Much uncertainty still exists on the approaches and steps in performing MD simulation for corrosion system. This paper reviews the basic principle of MD simulation along with methods, selection of parameters, expected result such as adsorption energy, binding energy and inhibitor orientation, and recent publications in corrosion inhibition studies.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


2000 ◽  
Vol 30 (1) ◽  
pp. 63-82 ◽  
Author(s):  
Richard Seaman ◽  
Frank Bradenburg

High performance properties in an architectural fabric are achieved by the proper selection of the base fiber, the selected fabric weave, the appropriate formulated coating compounds, and the coating processes utilized to produce the fabric.


2019 ◽  
pp. 1900393 ◽  
Author(s):  
Xiaonan Shang ◽  
Tianfeng Qin ◽  
Pengqian Guo ◽  
Kai Sun ◽  
Hao Su ◽  
...  

Author(s):  
Arun Unnikrishnan ◽  
P. V. M. Rao

Continuous need to increase productivity and reliability in machining has led to high-performance machines that are often characterized by high energy demands. As a result, energy minimization is identified as one of the key goals in machining. With the availability of improved predictive models for energy estimation in machining, energy-conscious process planning for machining is now possible. The present work focuses on the assessment of process plans of machined parts from energy consumption point of view. An experimentally validated model for energy estimation is first presented. Using this model two important process planning variables on energy consumption in machining has been studied. Firstly selection of tool paths including curvilinear tool paths has been considered from energy consumption point of view. Secondly, strategies for the selection of cutting parameters for roughing, semi-finishing and finishing from energy consumption perspective are discussed.


2007 ◽  
Vol 1052 ◽  
Author(s):  
Prasanna Srinivasan ◽  
S. Mark Spearing

AbstractThe selection of actuators at the micro-scale requires an understanding of the performance limits of different actuation mechanisms governed by the optimal selection of materials. This paper presents the results of analyses for elastic bi-material actuators based on simple beam theory and lumped parameter thermal models. Comparisons are made among commonly employed actuation schemes (electro-thermal, piezoelectric and shape memory) at micro scales and promising candidate materials are identified. Polymeric films on Si subjected to electro-thermal heating are optimal candidates for high displacement, low frequency devices while ferroelectric thin films of Pb-based ceramics on Si/ DLC are optimal for high force, high frequency devices. The ability to achieve ∼10 kHz at scales < 100μm make electro-thermal actuators competitive with piezoelectric actuators considering the low work/volume obtained in piezoelectric actuation (∼ 10−8J.m−3.mV−2). Although shape memory alloy (SMA) actuators such as Ni-Ti on Si deliver larger work (∼ 1 J.m−3K−2) than electro-thermal actuators at relatively low frequencies (∼ 1 kHz), the critical scale associated with the cessation of the shape memory effect forms the bounding limit for the actuator design. The built-in compressive stress levels (∼ 1GPa) in thin films of Si and DLC could be exploited for realizing a high performance actuator by electro-thermal buckling.


Sign in / Sign up

Export Citation Format

Share Document