Lizard-Skin-Inspired Nanofibrous Capillary Network Combined with a Slippery Surface for Efficient Fog Collection

Author(s):  
Yufei Zhang ◽  
Na Meng ◽  
Aijaz Ahmed Babar ◽  
Xianfeng Wang ◽  
Jianyong Yu ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wasim Jamshed ◽  
Mohamed R. Eid ◽  
Kottakkaran Sooppy Nisar ◽  
Nor Ain Azeany Mohd Nasir ◽  
Abhilash Edacherian ◽  
...  

AbstractThe current investigation aims to examine heat transfer as well as entropy generation analysis of Powell-Eyring nanofluid moving over a linearly expandable non-uniform medium. The nanofluid is investigated in terms of heat transport properties subjected to a convectively heated slippery surface. The effect of a magnetic field, porous medium, radiative flux, nanoparticle shapes, viscous dissipative flow, heat source, and Joule heating are also included in this analysis. The modeled equations regarding flow phenomenon are presented in the form of partial-differential equations (PDEs). Keller-box technique is utilized to detect the numerical solutions of modeled equations transformed into ordinary-differential equations (ODEs) via suitable similarity conversions. Two different nanofluids, Copper-methanol (Cu-MeOH) as well as Graphene oxide-methanol (GO-MeOH) have been taken for our study. Substantial results in terms of sundry variables against heat, frictional force, Nusselt number, and entropy production are elaborate graphically. This work’s noteworthy conclusion is that the thermal conductivity in Powell-Eyring phenomena steadily increases in contrast to classical liquid. The system’s entropy escalates in the case of volume fraction of nanoparticles, material parameters, and thermal radiation. The shape factor is more significant and it has a very clear effect on entropy rate in the case of GO-MeOH nanofluid than Cu-MeOH nanofluid.


2021 ◽  
Vol 415 ◽  
pp. 128953
Author(s):  
Sicheng Yuan ◽  
Jianwen Peng ◽  
Xiguang Zhang ◽  
Dan Lin ◽  
Haolei Geng ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Muhammad Amer Qureshi

In this paper, heat transfer and entropy of steady Williamson nanofluid flow based on the fundamental symmetry is studied. The fluid is positioned over a stretched flat surface moving non-uniformly. Nanofluid is analyzed for its flow and thermal transport properties by consigning it to a convectively heated slippery surface. Thermal conductivity is assumed to be varied with temperature impacted by thermal radiation along with axisymmetric magnetohydrodynamics (MHD). Boundary layer approximations lead to partial differential equations, which are transformed into ordinary differential equations in light of a single phase model accounting for Cu-water and TiO2-water nanofluids. The resulting ODEs are solved via a finite difference based Keller box scheme. Various formidable physical parameters affecting fluid movement, difference in temperature, system entropy, skin friction and Nusselt number around the boundary are presented graphically and numerically discussed. It has also been observed that the nanofluid based on Cu-water is identified as a superior thermal conductor rather than TiO2-water based nanofluid.


Development ◽  
2007 ◽  
Vol 134 (20) ◽  
pp. 3743-3752 ◽  
Author(s):  
A. C. White ◽  
K. J. Lavine ◽  
D. M. Ornitz

2008 ◽  
Vol 295 (1) ◽  
pp. H174-H184 ◽  
Author(s):  
Katherine A. Radek ◽  
Elizabeth J. Kovacs ◽  
Richard L. Gallo ◽  
Luisa A. DiPietro

Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1α protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.


As is well known, the glomeruli of the frog’s kidney are supplied with blood only by the renal arteries, whereas the renal tubules have a double supply. On the one hand, they receive blood by way of the renal portal veins; on the other hand, the efferent vessels from the glomeruli open into the capillary network round the tubules. The whole of the tubule receives blood from each of these two sources, so that the capillary network around the tubules can be fully injected either from the renal arteries or from the renal portal veins. Taking advantage of this fact it has been shown by Beddard and one of us (F. A. B.) that after complete occlusion of the glomeruli the tubules, when adequately supplied with oxygen, maintain their normal histological appearance, and may secrete urine. In the present experiments an attempt has been made to determine the function of the glomerulus and to ascertain whether the tubules possess the capacity to absorb water and solids.


1959 ◽  
Vol 5 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Maurice H. Bernstein ◽  
Daniel C. Pease

The fine structure of the tapetum of the cat eye has been investigated by electron microscopy. The tapetum is made up of modified choroidal cells, seen as polygonal plates grouped around penetrating blood vessels which terminate in the anastomosing capillary network of the choriocapillaris. The tapetal cells are rectangular in cross-section, set in regular brick-like rows, and attain a depth of some thirty-five cell layers in the central region. This number is gradually reduced peripherally, and is replaced at the margin of the tapetum by normal choroidal tissue. The individual cells are packed with long slender rods 0.1 µ by 4 to 5 µ. The rods are packed in groups and with their long axes oriented roughly parallel to the plane of the retinal surface. Each cell contains several such groups. Cells at the periphery or in the outer layers of the tapetum are frequently seen to contain both tapetal rods and melanin granules, the latter typical of the choroidal melanocytes. Also melanocyte granules may have intermediate shapes. These observations plus the similar density of the two inclusions lead to the belief that the tapetal rods may be melanin derivatives. A fibrous connective tissue layer lies between the tapetum and the retina. The subretinal capillary network, the choriocapillaris, rests on this layer and is covered by the basement membrane of the retinal epithelium. The cytoplasm of the retinal epithelium exhibits marked absorptive modifications where it comes in contact with the vessels of the choriocapillaris. This fibrous layer and the basement membrane of the retinal epithelium apparently comprise the structural elements of Bruch's membrane.


Sign in / Sign up

Export Citation Format

Share Document