Polydopamine-Coated Antheraea pernyi (A. pernyi) Silk Fibroin Films Promote Cell Adhesion and Wound Healing in Skin Tissue Repair

2019 ◽  
Vol 11 (38) ◽  
pp. 34736-34743 ◽  
Author(s):  
Jie Wang ◽  
Yuping Chen ◽  
Guanshan Zhou ◽  
Yuyin Chen ◽  
Chuanbin Mao ◽  
...  
2011 ◽  
Vol 140 ◽  
pp. 12-16
Author(s):  
Ting Zhao ◽  
Ceng Zhang ◽  
Qiang Tang ◽  
Shu Qin Yan ◽  
Ming Zhong Li

In this work, Antheraea pernyi silk fibroin (ASF) /chitosan (CS) blend scaffolds were prepared by freeze-drying. The relationship between preparation conditions and morphological structures of blend scaffolds was also studied. The results indicated that the porosity and pore diameter of the ASF /CS scaffolds decreased with increasing of the proportion of chitosan and decreasing of the freezing temperature. By changing the process conditions, the average pore diameter and porosity of ASF/CS scaffolds could be adjusted in the range of 134 - 527 μm and 71 - 91% respectively. Compared with the pure ASF or CS materials, the ASF / CS (60/40) blend materials were more favor of cell adhesion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chaoshan Han ◽  
Feng Liu ◽  
Yu Zhang ◽  
Wenjie Chen ◽  
Wei Luo ◽  
...  

Recent studies have shown that the hydrogels formed by composite biomaterials are better choice than hydrogels formed by single biomaterial for tissue repair. We explored the feasibility of the composite hydrogel formed by silk fibroin (SF) and silk sericin (SS) in tissue repair for the excellent mechanical properties of SF, and cell adhesion and biocompatible properties of SS. In our study, the SF SS hydrogel was formed by SF and SS protein with separate extraction method (LiBr dissolution for SF and hot alkaline water dissolution for SS), while SF-SS hydrogel was formed by SF and SS protein using simultaneous extraction method (LiBr dissolution for SF and SS protein). The effects of the two composite hydrogels on the release of inflammatory cytokines from macrophages and the wound were analyzed. Moreover, two hydrogels were used to encapsulate and deliver human umbilical cord mesenchymal stem cell derived exosomes (UMSC-Exo). Both SF SS and SF-SS hydrogels promoted wound healing, angiogenesis, and reduced inflammation and TNF-α secretion by macrophages. These beneficial effects were more significant in the experimental group treated by UMSC-Exo encapsulated in SF-SS hydrogel. Our study found that SF-SS hydrogel could be used as an excellent alternative to deliver exosomes for tissue repair.


2019 ◽  
Vol 7 (12) ◽  
pp. 5232-5237 ◽  
Author(s):  
Ying Zhang ◽  
Leihao Lu ◽  
Yuping Chen ◽  
Jie Wang ◽  
Yuyin Chen ◽  
...  

Natural polymer-based wound dressings have gained great attention in skin tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3537
Author(s):  
Kai-Chieh Chou ◽  
Chun-Ting Chen ◽  
Juin-Hong Cherng ◽  
Ming-Chia Li ◽  
Chia-Cheng Wen ◽  
...  

Therapeutic dressings to enhance burn wound repair and regeneration are required. Silk fibroin (SF), a natural protein, induces cell migration and serves as a biomaterial in various dressings. SF dressings usually contain α-helices and β-sheets. The former has been confirmed to improve cell proliferation and migration, but the wound healing effect and related mechanisms of β-sheet SF remain unclear. We investigated the effects of β-sheet SF in vivo and in vitro. Alcohol-treated α-helix SF transformed into the β-sheet form, which promoted granulation formation and re-epithelialization when applied as lyophilized SF dressing (LSFD) in a rat burn model. Our in vitro results showed that β-sheet SF increased human dermal fibroblast (HDF) migration and promoted the expression of extracellular matrix (ECM) proteins (fibronectin and type III collagen), matrix metalloproteinase-12, and the cell adhesion molecule, integrin β1, in rat granulation tissue and HDFs. This confirms the role of crosstalk between integrin β1 and ECM proteins in cell migration. In summary, we demonstrated that β-sheet SF facilitates tissue regeneration by modulating cell adhesion molecules in dermal fibroblasts. LSFD could find clinical application for burn wound regeneration. Moreover, β-sheet SF could be combined with anti-inflammatory materials, growth factors, or antibiotics to develop novel dressings.


2017 ◽  
Vol 2 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Heiko Sorg ◽  
Eberhard Grambow ◽  
Erik Eckl ◽  
Brigitte Vollmar

AbstractObjective:Oxytocin (OXY) has significant effects on mammalian behavior. Next to its role in lactation and social interactions, it is described to support better wound healing as well. However, direct OXY effects on wound healing and the regeneration of the microvascular network are still not clarified. We therefore examined the effects of OXY and an OXY receptor antagonist [atosiban (ATO)] on skin wound healing, focusing on epithelialization and neovascularization.Methods:Skin wound healing has been assessed using intravital fluorescence microscopy in a model of full dermal thickness wounds in the dorsal skin fold chamber of hairless mice. Animals received repetitive low or high doses of OXY or ATO. Morphological and cellular characterization of skin tissue repair was performed by histology and in vitro cell assays.Results:The assessment of skin tissue repair using this therapy regimen showed that OXY and ATO had no major influence on epithelialization, neovascularization, wound cellularity, or inflammation. Moreover, OXY and ATO did neither stimulate nor deteriorate keratinocyte or fibroblast migration and proliferation.Conclusion:In summary, this study is the first to demonstrate that OXY application does not impair skin wound healing or cell behavior. However, until now, the used transmitter system seems not to be clarified in detail, and it might be proposed that it is associated with the stress response of the organism to various stimuli.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 28401-28409
Author(s):  
Boxiang Wang ◽  
Hangdan Xu ◽  
Jia Li ◽  
Dehong Cheng ◽  
Yanhua Lu ◽  
...  

At present, Antheraea pernyi silk fibroin (ASF) based hydrogels have wide potential applications as biomaterials because of its superior cytocompatibility.


2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


2021 ◽  
Vol 22 (6) ◽  
pp. 3042
Author(s):  
Eun Ju Lee ◽  
Khurshid Ahmad ◽  
Shiva Pathak ◽  
SunJu Lee ◽  
Mohammad Hassan Baig ◽  
...  

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5β1, αvβ3, and αIIbβ3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30–40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


Sign in / Sign up

Export Citation Format

Share Document