Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death

2020 ◽  
Vol 12 (14) ◽  
pp. 16018-16030 ◽  
Author(s):  
Kun Tu ◽  
Huan Deng ◽  
Li Kong ◽  
Yi Wang ◽  
Ting Yang ◽  
...  
Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Julijan Kabiljo ◽  
Felix Harpain ◽  
Sebastian Carotta ◽  
Michael Bergmann

Radiation-induced immunogenic cell death has been described to contribute to the efficacy of external beam radiotherapy in local treatment of solid tumors. It is well established that radiation therapy can induce immunogenic cell death in cancer cells under certain conditions. Initial clinical studies combining radiotherapy with immunotherapies suggest a synergistic potential of this approach. Improving our understanding of how radiation reconditions the tumor immune microenvironment should pave the way for designing rational and robust combinations with immunotherapeutic drugs that enhance both local and systemic anti-cancer immune effects. In this review, we summarize irradiation-induced types of immunogenic cell death and their effects on the tumor microenvironment. We discuss preclinical insights on mechanisms and benefits of combining radiotherapy with immunotherapy, focusing on immune checkpoint inhibitors. In addition, we elaborate how these observations were translated into clinical studies and which parameters may be optimized to achieve best results in future clinical trials.


2021 ◽  
Vol 22 (10) ◽  
pp. 5158
Author(s):  
Kaitang Huang ◽  
Meiling Hu ◽  
Jiayun Chen ◽  
Jinfen Wei ◽  
Jingxin Qin ◽  
...  

Immune checkpoint inhibitor (ICI) therapies have shown great promise in cancer treatment. However, the intra-heterogeneity is a major barrier to reasonably classifying the potential benefited patients. Comprehensive heterogeneity analysis is needed to solve these clinical issues. In this study, the samples from pan-cancer and independent breast cancer datasets were divided into four tumor immune microenvironment (TIME) subtypes based on tumor programmed death ligand 1 (PD-L1) expression level and tumor-infiltrating lymphocyte (TIL) state. As the combination of the TIL Z score and PD-L1 expression showed superior prediction of response to ICI in multiple data sets compared to other methods, we used the TIL Z score and PD-L1 to classify samples. Therefore, samples were divided by combined TIL Z score and PD-L1 to identify four TIME subtypes, including type I (3.24%), type II (43.24%), type III (6.76%), and type IV (46.76%). Type I was associated with favorable prognosis with more T and DC cells, while type III had the poorest condition and composed a higher level of activated mast cells. Furthermore, TIME subtypes exhibited a distinct genetic and transcriptional feature: type III was observed to have the highest mutation rate (77.92%), while co-mutations patterns were characteristic in type I, and the PD-L1 positive subgroup showed higher carbohydrates, lipids, and xenobiotics metabolism compared to others. Overall, we developed a robust method to classify TIME and analyze the divergence of prognosis, immune cell composition, genomics, and transcriptomics patterns among TIME subtypes, which potentially provides insight for classification of TIME and a referrable theoretical basis for the screening benefited groups in the ICI immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinwen Wang ◽  
Shouwu Wu ◽  
Feng Liu ◽  
Dianshan Ke ◽  
Xinwu Wang ◽  
...  

Immunogenic cell death (ICD) has been classified as a form of regulated cell death (RCD) that is sufficient to activate an adaptive immune response. Accumulating evidence has demonstrated the ability of ICD to reshape the tumor immune microenvironment through the emission of danger signals or DAMPs, which may contribute to the immunotherapy. Currently, identification of ICD-associated biomarkers that stratify patients according to their benefit from ICD immunotherapy would be of great advantage. Here, we identified two ICD-associated subtypes by consensus clustering. ICD-high subtype was associated with the favorable clinical outcomes, abundant immune cell infiltration, and high activity of immune response signaling. Besides, we established and validated an ICD-related prognostic model that predicted the survival of HNSCC and was associated with tumor immune microenvironment. In conclusion, we established a new classification system of HNSCC based on ICD signatures. This stratification had significant clinical outcomes for estimating prognosis, as well as the immunotherapy of HNSCC patients


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanzhang Zhu ◽  
Weijiang Zhou ◽  
Yafeng Wan ◽  
Ke Ge ◽  
Jun Lu ◽  
...  

Abstract Background The present study aims to develop a nanoparticle encapsulating doxorubicin (DOX) and programmed death-ligand 1 (PD-L1) siRNA and evaluate its anti-tumor effects on hepatoma carcinoma (HCC). Methods Nanoparticle encapsulating DOX and PD-L1 siRNA (NPDOX/siPD-L1) was characterized by dynamic light scattering and transmission electron microscopy. Flow cytometry was applied to analyze cell populations, NPDOX/siPD-L1 internalization, and cell apoptosis. Real-Time (RT)-quantitative reverse transcription (qPCR) and western blotting were used to determine the mRNA and protein levels, respectively. Released ATP was determined using ATP determination kit and cytokines were determined using specific ELISAs. A tumor-bearing animal model was established to evaluate the anti-tumor effects of NPDOX/siPD-L1. Results Treatment of NPDOX/siPD-L1 induced immunogenic cell death (ICD) and PD-L1 overexpression in HCC. In vivo study demonstrated that intravenously injection of NPDOX/siPD-L1 significantly inhibited the tumor volume and PD-L1 expressions of tumor tissue in the H22 tumor-bearing animal model. Besides, the treatment of NPDOX/siPD-L1 also regulated the populations of matured dendritic cells and cytotoxic T cells and the productions of cytokines in the tumor tissues. Conclusion Taken together, NPDOX/siPD-L1 showed significant anti-tumor effects on HCC by the induction of ICD and inhibition of PD-L1 overexpression.


Sign in / Sign up

Export Citation Format

Share Document