Flexible Conductive Substrate Incorporating a Submicrometer Co-continuous Polyaniline Phase within Polyethylene by Controlled Crazing

2021 ◽  
Vol 3 (4) ◽  
pp. 1880-1889
Author(s):  
Anton B. Kornberg ◽  
Michael R. Thompson ◽  
Shiping Zhu
Keyword(s):  
2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longhua Tang ◽  
Binoy Paulose Nadappuram ◽  
Paolo Cadinu ◽  
Zhiyu Zhao ◽  
Liang Xue ◽  
...  

AbstractQuantum tunnelling offers a unique opportunity to study nanoscale objects with atomic resolution using electrical readout. However, practical implementation is impeded by the lack of simple, stable probes, that are required for successful operation. Existing platforms offer low throughput and operate in a limited range of analyte concentrations, as there is no active control to transport molecules to the sensor. We report on a standalone tunnelling probe based on double-barrelled capillary nanoelectrodes that do not require a conductive substrate to operate unlike other techniques, such as scanning tunnelling microscopy. These probes can be used to efficiently operate in solution environments and detect single molecules, including mononucleotides, oligonucleotides, and proteins. The probes are simple to fabricate, exhibit remarkable stability, and can be combined with dielectrophoretic trapping, enabling active analyte transport to the tunnelling sensor. The latter allows for up to 5-orders of magnitude increase in event detection rates and sub-femtomolar sensitivity.


2012 ◽  
Vol 4 (12) ◽  
pp. 4003 ◽  
Author(s):  
Ruimin Ding ◽  
Jinping Liu ◽  
Jian Jiang ◽  
JianHui Zhu ◽  
Xintang Huang

Nanoscale ◽  
2015 ◽  
Vol 7 (16) ◽  
pp. 7174-7177 ◽  
Author(s):  
S. Vankova ◽  
S. Zanarini ◽  
J. Amici ◽  
F. Cámara ◽  
R. Arletti ◽  
...  

We report a novel type of WO3 nanostructure, i.e. nanorolls obtained as a self-assembled thin film on a transparent conductive substrate.


Author(s):  
Pengyang Lei ◽  
Jinhui Wang ◽  
Ping Zhang ◽  
Shiyou Liu ◽  
Siyu Zhang ◽  
...  

A uniform porous NiCoO2 nanowire film was successfully grown on a transparent conductive substrate for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Lan ◽  
Sidra Farid ◽  
Xenia Meshik ◽  
Ke Xu ◽  
Min Choi ◽  
...  

DNA aptamers have the ability to bind to target molecules with high selectivity and therefore have a wide range of clinical applications. Herein, a graphene substrate functionalized with a DNA aptamer is used to sense immunoglobulin E. The graphene serves as the conductive substrate in this field-effect-transistor-like (FET-like) structure. A voltage probe in an electrolyte is used to sense the presence of IgE as a result of the changes in the charge distribution that occur when an IgE molecule binds to the IgE DNA-based aptamer. Because IgE is an antibody associated with allergic reactions and immune deficiency-related diseases, its detection is of utmost importance for biomedical applications.


2018 ◽  
Vol 6 (9) ◽  
pp. 3857-3863 ◽  
Author(s):  
Jun Liu ◽  
Ai Xiang Wei ◽  
Minghua Chen ◽  
Xinhui Xia

High-quality Li4Ti5O12/N-doped carbon (LTO/N-C) nanotube arrays on a conductive substrate are fabricated via a new ALD-assisted method for lithium ion battery applications. The designed LTO/N-C nanotube arrays show very impressive high-rate capacity (153 mA h g−1 at 5C) and stable capacity: 98% retention after 6000 cycles at 40C.


Sign in / Sign up

Export Citation Format

Share Document