scholarly journals Photoelectric Conversion Efficiency of DSSC According to Plasma Surface Treatment of Conductive Substrate

Author(s):  
Hyun-Chul Ki ◽  
Seon-Hoon Kim ◽  
Doo-Gun Kim ◽  
Tae-Un Kim ◽  
Kyung-Jin Hong ◽  
...  
2013 ◽  
Vol 51 (10) ◽  
pp. 735-741
Author(s):  
Dong-Yong Kim ◽  
Eun-Wook Jeong ◽  
Kwun Nam Hui ◽  
Youngson Choe ◽  
Jung-Ho Han ◽  
...  

2008 ◽  
Vol 128 (5) ◽  
pp. 339-342
Author(s):  
Dai Ling ◽  
Yin Ting ◽  
Lin Fuchang ◽  
Yan Fei

2020 ◽  
Vol 49 (12) ◽  
pp. 3766-3774 ◽  
Author(s):  
Jianping Li ◽  
Dai Wu ◽  
Chunlei Wang ◽  
Ding Liu ◽  
Weilin Chen ◽  
...  

The strategy of constructing a 2D flexible superlattice polyoxometalate/rGO heterojunction is proposed to improve the photoelectric conversion efficiency of photovoltaic devices.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 901
Author(s):  
Miklós Berczeli ◽  
Zoltán Weltsch

The development of bonding technology and coating technologies require the use of modern materials and topologies for the demanding effect and modification of their wetting properties. For the industry, a process modification process that can be integrated into a process is the atmospheric pressure of air operation plasma surface treatment. This can be classified and evaluated based on the wettability, which has a significant impact on the adhesive force. The aim is to improve the wetting properties and to find the relationship between plasma treatment parameters, wetting, and adhesion. High Impact PolyStyrene (HIPS) was used as an experimental material, and then the plasma treatment can be treated with various adjustable parameters. The effect of plasma parameters on surface roughness, wetting contact angle, and using Fowkes theory of the surface energy have been investigated. Seven different plasma jet treatment distances were tested, combined with 5 scan speeds. Samples with the best plasma parameters were prepared from 25 mm × 25 mm overlapping adhesive joints using acrylic/cyanoacrylate. The possibility of creating a completely hydrophilic surface was achieved, where the untreated wetting edge angle decreased from 88.2° to 0° for distilled water and from 62.7° to 0° in the case of ethylene glycol. The bonding strength of High Impact PolyStyrene was increased by plasma treatment by 297%.


2020 ◽  
Vol 232 ◽  
pp. 111403 ◽  
Author(s):  
Neelakandan M. Santhosh ◽  
Aswathy Vasudevan ◽  
Andrea Jurov ◽  
Anja Korent ◽  
Petr Slobodian ◽  
...  

2009 ◽  
Vol 518 (3) ◽  
pp. 1006-1011 ◽  
Author(s):  
Yuichi Setsuhara ◽  
Ken Cho ◽  
Kosuke Takenaka ◽  
Akinori Ebe ◽  
Masaharu Shiratani ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ho Chang ◽  
Chih-Hao Chen ◽  
Mu-Jung Kao ◽  
Hsin-Han Hsiao

This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2core-shell-type nanocomposites are mixed with Degussa P25 TiO2in different proportions. Triton X-100 is added and polyethylene glycol (PEG) at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document