scholarly journals Neuroprotective Action of Multitarget 7-Aminophenanthridin-6(5H)-one Derivatives against Metal-Induced Cell Death and Oxidative Stress in SN56 Cells

Author(s):  
Paula Moyano ◽  
David Vicente-Zurdo ◽  
Cristina Blázquez-Barbadillo ◽  
J. Carlos Menéndez ◽  
Juan F. González ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
pp. e1258505 ◽  
Author(s):  
Irena Moserova ◽  
Iva Truxova ◽  
Abhishek D. Garg ◽  
Jakub Tomala ◽  
Patrizia Agostinis ◽  
...  

2014 ◽  
Vol 1843 (9) ◽  
pp. 2089-2099 ◽  
Author(s):  
Mira Polajnar ◽  
Tina Zavašnik-Bergant ◽  
Nataša Kopitar-Jerala ◽  
Magda Tušek-Žnidarič ◽  
Eva Žerovnik

2020 ◽  
Vol 21 (7) ◽  
pp. 2501 ◽  
Author(s):  
Thomas Nury ◽  
Gérard Lizard ◽  
Anne Vejux

Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.


2019 ◽  
Vol 21 (5) ◽  
pp. 466-472 ◽  
Author(s):  
Raquel Rodríguez-González ◽  
Piero Pollesello ◽  
Aurora Baluja ◽  
Julián Álvarez

Levosimendan is a myocardial Ca2+sensitizer and opener of ATP-dependent potassium channels with inotropic, vasodilating, and cardioprotective properties. It was originally developed for the treatment of acute decompensated heart failure, but its complex mechanism of action means that it could also play a role in organ protection in response to infection. Using an in vitro approach, we explored whether levosimendan administration influenced cell responses to lipopolysaccharide (LPS). Primary human umbilical vein endothelial cells were stimulated with 1 µg/ml LPS from Escherichia coli ( E. coli). Cells were treated with levosimendan at 0, 0.1, 1, or 10 µM 3 hr later. Samples were taken 24 hr after treatment to measure cell necrosis, apoptosis, pro-inflammatory mediators (interleukin 6 [IL-6] and toll-like receptor 4 [TLR4]), and oxidative stress (total reactive oxygen species/reactive nitrogen species [ROS/RNS]). Levosimendan at 1 and 10 µM protected against LPS-induced endothelial cell death and reduced TLR4 expression ( p < .05). All doses reduced levels of IL-6 and ROS/RNS ( p < .05). Findings suggest that levosimendan may exert protective effects against endothelial cell death in this model via attenuation of inflammation and oxidative stress pathways. Future studies might explore the potential beneficial role of levosimendan in modulating molecular mechanisms triggered by infections.


2007 ◽  
Vol 9 (9) ◽  
pp. 1471-1484 ◽  
Author(s):  
Michael J. Morgan ◽  
You-Sun Kim ◽  
Zhenggang Liu

Sign in / Sign up

Export Citation Format

Share Document