Catalytic Extraction Processing:  An Elemental Recycling Technology

1996 ◽  
Vol 30 (7) ◽  
pp. 2155-2167 ◽  
Author(s):  
Christopher J. Nagel ◽  
Claire A. Chanenchuk ◽  
Esther W. Wong ◽  
Robert D. Bach
2020 ◽  
Vol 27 (25) ◽  
pp. 4157-4164 ◽  
Author(s):  
Taku Fukuzawa ◽  
Junichi Nezu

Background: The complement system usually helps protect against microbial infection, but it could also be involved in the onset of various diseases. Inhibition of complement component 5 (C5) with eculizumab has resulted in a significant reduction of hemolysis, reduction of thromboembolic events, and increased survival in patients with Paroxysmal Nocturnal Hemoglobinuria (PNH). However, eculizumab requires frequent intravenous infusions due to the abundance of C5 in plasma and some patients may still experience breakthrough hemolysis. This review introduces the recent body of knowledge on recycling technology and discusses the likely therapeutic benefits of SKY59, a novel recycling antibody, for PNH and complement-mediated disorders. Methods: By using recycling technology, we created a novel anti-C5 antibody, SKY59, capable of binding to C5 pH-dependently. Results: In cynomolgus monkeys, SKY59 robustly inhibited C5 and complement activity for significantly longer than a conventional antibody. SKY59 also showed an inhibitory effect on C5 variant p.Arg885His, whereas eculizumab does not suppress complement activity in patients with this type of mutation. Conclusion: SKY59 is a promising anti-C5 biologic agent that has significant advantages over current therapies such as long duration of action and efficacy against C5 variants.


Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Linda Gaines ◽  
Qiang Dai ◽  
John T. Vaughey ◽  
Samuel Gillard

The expected rapid growth in electric vehicle deployment will inevitably be followed by a corresponding rise in the supply of end-of-life vehicles and their lithium-ion batteries (LIBs). The batteries may be reused, but will eventually be spent and provide a potential domestic resource that can help supply materials for future battery production. However, commercial recycling processes depend on profits from recovery of cobalt, use of which is being reduced in new cathode chemistries. The U.S. Department of Energy, therefore, established the ReCell Center in early 2019 to develop robust LIB recycling technology that would be economical even for batteries that contain no cobalt. The central feature of the technology is recovery of the cathode material with its unique crystalline cathode morphology intact in order to retain its value and functionality. Other materials are recovered as well in order to maximize revenues and minimize waste-handling costs. Analysis and modeling serve to evaluate and compare process options so that we can identify those that will be most economical while still minimizing energy use and environmental impacts. This paper provides background and describes highlights of the center’s first 2 years of operation.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 683
Author(s):  
Edit Gorliczay ◽  
Imre Boczonádi ◽  
Nikolett Éva Kiss ◽  
Florence Alexandra Tóth ◽  
Sándor Attila Pabar ◽  
...  

Due to the intensification of the poultry sector, poultry manure is being produced in increasing quantities, and its on-site management is becoming a critical problem. Animal health problems can be solved by stricter the veterinary and environmental standards. The off-site coupled industrial chicken manure recycling technology (Hosoya compost tea) fundamentally affects the agricultural value of new organic-based products. Due to the limited information available on manure recycling technology-related microbiological changes, this was examined in this study. A pot experiment with a pepper test plant was set up, using two different soils (Arenosol, slightly humous Arenosol) and two different doses (irrigation once a week with 40 mL of compost tea: dose 1, D1; irrigation twice a week with 40 mL of compost tea: dose 2, D2) of compost tea. Compost tea raw materials, compost tea, and compost tea treated soils were tested. The products (granulated manure, compost tea) and their effects were characterized by the following parameters: aerobic bacterial count (log CFU/g), fluorescein diacetate activity (3′,6′-diacetylfluorescein, FDA, µg Fl/g soil), glucosidase enzyme activity (GlA; PNP/µmol/g), and identification of microorganisms in compost tea with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, we aimed to investigate how the microbiological indicators tested, and the effect of compost tea on the tested plant, could be interpreted. Based on our results, the microbiological characteristics of the treated soils showed an increase in enzyme activity, in the case of FDA an increase +0.26 μg Fl/g soil at D1, while the GlA increased +1.28 PNP/µmol/g with slightly humous Arenosol soil and increased +2.44 PNP/µmol/g at D1; and the aerobic bacterial count increased +0.15 log CFU/g at D2, +0.35 log CFU/g with slightly humous Arenosol and +0.85 log CFU/g at W8. MALDI-TOF MS results showed that the dominant bacterial genera analyzed were Bacillus sp., Lysinibacillus sp., and Pseudomonas sp. Overall, the microbial inducers we investigated could be a good alternative for evaluating the effects of compost solutions in soil–plant systems. In both soil types, the total chlorophyll content of compost tea-treated pepper (Capsicum annuum L.) had increased as a result of compost tea. D1 is recommended for Arenosol and, D2 for slightly humous Arenosol soil.


Futures ◽  
1998 ◽  
Vol 30 (5) ◽  
pp. 425-442 ◽  
Author(s):  
Casper Boks ◽  
Erik Tempelman
Keyword(s):  

2021 ◽  
Vol 2021 (24) ◽  
pp. 48-59
Author(s):  
Anatolii Mudrychenko ◽  
◽  
Ivan Balashov ◽  
Sergey Illyasch ◽  
◽  
...  

ntroduction. Rehabilitation of public roads network requires a comprehensive recovery with strengthening of the bearing capacity of the pavement foundation. Rehabilitation of the foundation bearing capacity performed by arranging layers of road material made by cold recycling technology (hereinafter — CRRM) in accordance with [4] or by arranging a layer of crushed stone — sand mixture reinforced with cement or complex binder (hereinafter — CSSM 20) according to [13]. Purpose. The purpose of the work is to study the feasibility of using acrylic additives for the preparation of mixtures made by cold recycling technology and crushed stone-sand mixtures treated with cement in the layers of pavement foundation. Materials and methods. Experimental comparative tests of CRRM and CSSM 20 with different content of complex binder were performed. Results. Feasibility of acrylic additives use has been established (hereinafter — the additive) for the preparation of CRRM and CSSM 20 in the pavement foundation layers. Recommendations on technological parameters of preparation, transportation, laying and compaction of mentioned mixtures are given. Conclusions. Performed researches have shown that according to physical and mechanical indicators CRRM and CSSM20 meet the requirements of the current normative documents of Ukraine. The advantages of use are noted.


2012 ◽  
Vol 204-208 ◽  
pp. 1857-1863
Author(s):  
Min Jiang Zhang ◽  
Wen Bo Zhang ◽  
Bao Yang Yu

Based on the theory of hierarchy analysis, the post-assessment indexes system of cold recycling technology project have been established, and the hierarchy analytic procedure have been used to determine the weighing coefficients for post-assessment indexes of cold recycling engineering of asphalt pavement, and the weighing values for various levels factors were given for the cold recycling base layer project of highway of Shenyang-Yingkou. Considering the road performance and economic benefit, societal and environmental benefit, the analytic hierarchy procedure (AHP) method can effectively avoid making wrong decisions subjectively and made it more scientific and reasonable to determine the weighing values of post-assessment indexes, and it is an effective method to determine the weighing values for post-assessment indexes of the cold recycling technology project.


2011 ◽  
Vol 243-249 ◽  
pp. 4293-4296
Author(s):  
Jing Li Liu ◽  
Lian Yu Wei ◽  
Guo Qiang Zhang

Through the foaming mechanism and foaming effect evaluation, this paper analyzes the production procedure, optimum content and strength of foamed asphalt mixture thoroughly. Combined with the construction process quality control and inspection and acceptance criteria, this paper provides data for reference and theoretical basis for application of cold recycled technology of foamed asphalt to pavement project. Its construction without disrupting traffic, thus shorten the construction period and improve efficiency, which also have advantages such as energy conservation, environment protection and economy. Above all, it is beneficial to foamed asphalt′s popularization and application.


Sign in / Sign up

Export Citation Format

Share Document