Egg-Derived Peptide IRW Inhibits TNF-α-Induced Inflammatory Response and Oxidative Stress in Endothelial Cells

2010 ◽  
Vol 58 (20) ◽  
pp. 10840-10846 ◽  
Author(s):  
Wuyang Huang ◽  
Subhadeep Chakrabarti ◽  
Kaustav Majumder ◽  
Yanyan Jiang ◽  
Sandra T. Davidge ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haijun Zhao ◽  
Yanhui He

Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.


2019 ◽  
Vol 8 (1) ◽  
pp. 659-667 ◽  
Author(s):  
Li‐Tao Tong ◽  
Zhiyuan Ju ◽  
Liya Liu ◽  
Lili Wang ◽  
Xianrong Zhou ◽  
...  

2017 ◽  
Vol 398 (12) ◽  
pp. 1309-1317 ◽  
Author(s):  
Julie Chao ◽  
Pengfei Li ◽  
Lee Chao

AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Neuza Costa ◽  
Thaisa Verediano ◽  
Mirelle Viana ◽  
Maria Vaz-Tostes

Abstract Objectives To investigate the prebiotic effect of yacon, source of fructooligosaccharides (FOS), on the integrity of the intestinal barrier, inflammatory response and oxidative stress in rats with induced colon cancer. Methods 44 adult Wistar rats were distributed into 4 groups: S (without colon cancer and yacon; n = 10); C (with colon cancer without yacon; n = 12); Y (without colon cancer with yacon; n = 10); and CY (with colon cancer and yacon; n = 12). Animals of groups S and C received AIN-93 M diet and animals of groups Y and CY received the same diet but added with yacon flour containing 28.95% FOS, to provide 5% FOS in the diet, for 16 weeks. From week 4 to 8, the animals of C and CY groups received an intraperitoneal dose of 25 mg/kg body weight of 1.2-dimethylhydrazine (DMH-Sigma®) once a week. In the last week, 24h-urine collection was performed for intestinal permeability analysis using lactulose and mannitol. Blood sample was collected for the analysis of IL-10 and IL-12 cytokines (Milliplex® Map, Luminex®) and total antioxidant capacity - TAC (Elabscience®). Large intestine was collected for intraluminal pH, short chain fatty acids - SCFA (HPLC) and immunoglobulin A – sIgA (Cloud-Clone®) analysis. Normal distributed data were analyzed by Two-way ANOVA, followed by Newman-Keuls (p < 0.05), using GraphPad Prism®, version 7. Results Cancer-induced animals showed higher TNF-α, SCFA (acetate, propionate and butirate), and lower TAC. Yacon reduced intraluminal pH and lactulose/mannitol ratio, increased propionic acid in the feces, but showed no effect on IL-10, IL-12, TNF-α, and IL-10/IL-12 ratio. The levels of sIgA were increased only in the group fed yacon without cancer (group Y). Mannitol and TAC were higher in CY group, showing a significant interaction of yacon and colon cancer. Conclusions Yacon reduced pH, intestinal permeability and the oxidative stress associated with colon cancer. The local immunity (sIgA) was raised, although no effect was observed on cytokines with yacon consumption. Yacon is a rich source of FOS wich improves the intestinal barrier and mucosal immunity, particularly in healthy animals. Funding Sources CNPq, FAPES.


Author(s):  
Rukiye Nalan Tiftik ◽  
Meryem Temiz-Reşitoğlu ◽  
Demet Sinem Güden ◽  
Gülsen Bayrak ◽  
İsmail Ün ◽  
...  

It has been clearly indicated that osteoarthritis (OA) is an inflammatory and degenerative disease that could be promoted by Rho-kinase (ROCK); however, little is known about the role of ROCK/inhibitor κB alpha (IκB-α)/nuclear factor-κB (NF-κB) p65 pathway activation in interleukin-1β (IL-1β) induced inflammatory response and oxidative stress in primary human chondrocytes. To test this hypothesis, we focused on determining ROCK-II, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), p22phox, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subtype 4 (NOX4) protein expression, ROCK-II activity, NADPH oxidase levels, and total antioxidant capacity (TAC) in the presence and absence of ROCK-inhibitor fasudil. IL-1β (2 ng·mL–1, 24 h) increased the expression of ROCK-II, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, TNF-α, COX-2, and p22phox proteins, and decreased the expression of IκB-α, and the NOX4 protein level did not alter. ROCK activity and NADPH oxidase levels were increased, whereas the TAC was decreased by IL-1β. Fasudil (10−5–10−7 M) reversed all these changes induced by IL-1β. These results demonstrate that ROCK/IκB-α/NF-κB p65 pathway activation contributes to the IL-1β-induced inflammatory response and oxidative stress, and thus, ROCK inhibition might be a beneficial treatment option for OA patients mainly based on its anti-inflammatory and antioxidant effects.


Author(s):  
Hui Jiang ◽  
Yu Kang ◽  
Chunlin Ge ◽  
Zhengying Zhang ◽  
Yan Xie

Background: To investigate the effects of different doses of dexmedetomidine on inflammatory response, oxidative stress, cerebral tissue oxygen saturation (SctO2) and intrapulmonary shunt in patients undergoing one-lung ventilation (OLV). Methods: Sixty patients undergoing open pulmonary lobectomy in our hospital from January 2016 to December 2017 were enrolled and randomly divided into high-dose dexmedetomidine group (group D1, 1 μg/kg, n=20), low-dose dexmedetomidine group (group D2, 0.5 μg/kg, n=20) and control group (group C, n=20). Then, arterial blood and internal jugular venous blood were taken before anesthesia induction (T0) and at 15 min after two-lung ventilation (T1) and 5 min (T2) and 30 min (T3) after OLV for later use. Next, the changes in hemodynamic parameters [mean arterial pressure (MAP), heart rate (HR) and pulse oxygen saturation (SpO2)] of patients were observed in each group. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect serum inflammatory factors such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and oxidative stress indicators [superoxide dismutase (SOD) and malondialdehyde (MDA)]. The changes in SctO2, arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt Qs/Qt were observed. Additionally, the changes in lung function indicators like lung dynamic compliance (Cdyn) and airway peak pressure (Ppeak) were determined. Results: There were no statistically significant differences in the MAP, HR and SpO2 among three groups at each observation time point (P>0.05). At T2 and T3, the levels of serum IL-6, TNF-α and IL-8 were obviously decreased in group D1 and D2 compared with those in group C (P<0.05), and the decreases in group D1 were overtly larger than those in group D2, and the decreases at T3 were markedly greater than those at T2 (P<0.05). In comparison with group C, group D1 and D2 had notably reduced levels of serum reactive oxygen species (ROS) and MDA (P<0.05) and remarkably increased SOD content (P<0.05) at T2 and T3, and the effects were markedly better in group D1 than those in group D2. Besides, they were significantly superior at T3 to those at T2 (P<0.05). The SctO2 in group D1 and D2 was evidently lowered at T2 and T3 compared with that at T0, and the decrease in group D1 was distinctly smaller than that in group D2 (P<0.05). The Qs/Qt was significantly lower in group D1 and D2 than that in group C at T2 and T3 (P<0.05), while the PaO2 content was notably raised (P<0.05), and the decrease and increase were significantly larger in group D1 than those in group D2, and they were obviously greater at T3 to those at T2 (P<0.05). At T0 and T1, no significant differences were detected in the Cdyn, Pplat and Ppeak among three groups. At T2 and T3, the Cdyn was significantly elevated, while the Pplat and Ppeak overtly declined (P<0.05), and group D1 had greater changes in comparison with group D2, and the changes were obviously more evident at T3 to those at T2 (P<0.05). Conclusions: Dexmedetomidine effectively ameliorates inflammatory response and oxidative stress, lowers oxygenation, Qs/Qt and the decrease in SctO2 and improves lung function during OLV, with good efficacy.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Feng Sun ◽  
Haiwei Zhang ◽  
Tianwen Huang ◽  
Jianhui Shi ◽  
Tianli Wei ◽  
...  

Objectives. To investigate the roles of miR-221 in spinal cord injury (SCI) as well as the underlying mechanism. Methods. A mouse model of SCI was generated and used to examine dynamic changes in grip strength of the mouse upper and lower limbs. The expression of miR-221 and tumor necrosis factor-α (TNF-α) was detected by RT-qPCR and Western blot. Levels of inflammation and oxidative stress in microglia cells of the injured mice overexpressing miR-221 were then measured by ELISA. Bioinformatics analysis and dual-luciferase reporter assay were conducted to identify the miR-221 target. Results. We successfully constructed SCI mouse model. The results of qRT-PCR showed that miR-221 was gradually upregulated in the spinal cord tissue of mice in the SCI group with the prolonged injury time. At the same time, the mRNA and protein of TNF-α gradually decreased. We further confirmed through cell experiments that the inflammatory factors TNF-α and IL-6, as well as iNOS and eROS, were upregulated in spinal cord microglia cells of SCI mice, and upregulation of miR-122 can inhibit their expression. Finally, the luciferase reporter experiment confirmed that miR-122 targeted TNF-α. Conclusions. We present evidence that miR-221 promotes functional recovery of the injured spinal cord through targeting TNF-α, while alleviating inflammatory response and oxidative stress.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Juliana Navia Pelaez ◽  
Edenil Costa Aguilar ◽  
Thiago Diniz ◽  
Jacqueline Alvarez‐Leite ◽  
Virginia Lemos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document