Genotypic Variation of the Glucosinolate Profile in Pak Choi (Brassica rapa ssp.chinensis)

2013 ◽  
Vol 61 (8) ◽  
pp. 1943-1953 ◽  
Author(s):  
Melanie Wiesner ◽  
Rita Zrenner ◽  
Angelika Krumbein ◽  
Hansruedi Glatt ◽  
Monika Schreiner
2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hyeon Ji Yeo ◽  
Seung-A Baek ◽  
Ramaraj Sathasivam ◽  
Jae Kwang Kim ◽  
Sang Un Park

AbstractThis study aimed to comprehensively analyze primary and secondary metabolites of three different-colored (white, pale green, and green) pak choi cultivars (Brassica rapa subsp. chinensis) using gas chromatography attached with time-of-flight mass spectrometry (GC-TOFMS) and high-performance liquid chromatography (HPLC). In total, 53 primary metabolites were identified and subjected to partial least-squares discriminant analysis. The result revealed a significant difference in the primary and secondary metabolites between the three pak choi cultivars. In addition, 49 hydrophilic metabolites were detected in different cultivars. Total phenolic and glucosinolate contents were highest in the pale green and green cultivars, respectively, whereas total carotenoid and chlorophyll contents were highest in the white cultivar. Superoxide dismutase activity, 2,2-diphenyl-1-picrylhydraz scavenging, and reducing power were slightly increased in the white, pale green, and green cultivars, respectively. In addition, a negative correlation between pigments and phenylpropanoids was discovered by metabolite correlation analysis. This approach will provide useful information for the development of strategies to enhance the biosynthesis of phenolics, glucosinolates, carotenoids, and chlorophyll, and to improve antioxidant activity in pak choi cultivars. In addition, this study supports the use of HPLC and GC-TOFMS-based metabolite profiling to explore differences in pak choi cultivars.


2018 ◽  
Vol 20 (1) ◽  
pp. 93
Author(s):  
Jin Wang ◽  
Feiyi Huang ◽  
Xiong You ◽  
Xilin Hou

In plants, heptahelical proteins (HHPs) have been shown to respond to a variety of abiotic stresses, including cold stress. Up to the present, the regulation mechanism of HHP5 under low temperature stress remains unclear. In this study, BcHHP5 was isolated from Pak-choi (Brassica rapa ssp. chinensis cv. Suzhouqing). Sequence analysis and phylogenetic analysis indicated that BcHHP5 in Pak-choi is similar to AtHHP5 in Arabidopsis thaliana. Structure analysis showed that the structure of the BcHHP5 protein is relatively stable and highly conservative. Subcellular localization indicated that BcHHP5 was localized on the cell membrane and nuclear membrane. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that BcHHP5 was induced to express by cold and other abiotic stresses. In Pak-choi, BcHHP5-silenced assay, inhibiting the action of endogenous BcHHP5, indicated that BcHHP5-silenced might have a negative effect on cold tolerance, which was further confirmed. All of these results indicate that BcHHP5 might play a role in abiotic response. This work can serve as a reference for the functional analysis of other cold-related proteins from Pak-choi in the future.


HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 436-440 ◽  
Author(s):  
Chandrappa Gangaiah ◽  
Amjad Ahmad ◽  
Hue V. Nguyen ◽  
Koon-Hui Wang ◽  
Theodore J.K. Radovich

The application of locally available invasive algae biomass as a fertilizer for crop production in Hawaii is being investigated as a substitute for imported chemical fertilizers. Three closely related greenhouse trials were conducted to determine if the algae served as a source of potassium (K) on growth, yield, and K mineral nutrition in pak choi (Brassica rapa, Chinensis group). In the first trial, three algal species (Gracilaria salicornia, Kappaphycus alvarezii, and Eucheuma denticulatum) were applied at five rates of K, each to evaluate their effects on growth and K nutrition of pak choi plants. The pak choi was direct seeded into 0.0027-m3 pots containing peatmoss-based growth media. In trial 2, pak choi was grown in peat media at six rates of K provided by algae (E. denticulatum) or by potassium nitrate (KNO3). In trial 3, the six rates of K were provided through algae (K. alvarezii), KNO3, and potassium chloride (KCl) and were compared for growth and K nutrition. Results from the first greenhouse trial showed no significant differences among the three algal species in yield or tissue K content of pak choi. However, plant yield and tissue K concentration were increased with application rates. The maximum yield and tissue K were observed when K was provided within the range of 250–300 kg·ha−1. Similarly, in Expts. 2 and 3, there were no significant differences between commercial K fertilizers and algal K species for yield. Only K rates were significant for yields and tissue K concentrations. It was concluded that K in the invasive algae was similarly available as K in commercial synthetic fertilizers for pak choi growth in terms of yield and tissue K content under our experimental conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 450 ◽  
Author(s):  
Hamideh Fatemi ◽  
Chokri Zaghdoud ◽  
Pedro A. Nortes ◽  
Micaela Carvajal ◽  
Maria del Carmen Martínez-Ballesta

Zinc (Zn) is considered an essential element with beneficial effects on plant cells; however, as a heavy metal, it may induce adverse effects on plants if its concentration exceeds a threshold. In this work, the effects of short-term and prolonged application of low (25 µM) and high (500 µM) Zn concentrations on pak choi (Brassica rapa L.) plants were evaluated. For this, two experiments were conducted. In the first, the effects of short-term (15 h) and partial foliar application were evaluated, and in the second a long-term (15 day) foliar application was applied. The results indicate that at short-term, Zn may induce a rapid hydraulic signal from the sprayed leaves to the roots, leading to changes in root hydraulic conductance but without effects on the whole-leaf gas exchange parameters. Root accumulation of Zn may prevent leaf damage. The role of different root and leaf aquaporin isoforms in the mediation of this signal is discussed, since significant variations in PIP1 and PIP2 gene expression were observed. In the second experiment, low Zn concentration had a beneficial effect on plant growth and specific aquaporin isoforms were differentially regulated at the transcriptional level in the roots. By contrast, the high Zn concentration had a detrimental effect on growth, with reductions in the root hydraulic conductance, leaf photosynthesis rate and Ca2+ uptake in the roots. The abundance of the PIP1 isoforms was significantly increased during this response. Therefore, a 25 µM Zn dose resulted in a positive effect in pak choi growth through an increased root hydraulic conductance.


2019 ◽  
Vol 82 ◽  
pp. 103232 ◽  
Author(s):  
Xiaomin Chen ◽  
Franziska S. Hanschen ◽  
Susanne Neugart ◽  
Monika Schreiner ◽  
Sara A. Vargas ◽  
...  

2020 ◽  
Vol 71 (16) ◽  
pp. 4914-4929
Author(s):  
M J I Shohag ◽  
Yanyan Wei ◽  
Jie Zhang ◽  
Ying Feng ◽  
Michael Rychlik ◽  
...  

Abstract Folates are one of the essential micronutrients for all living organisms. Due to inadequate dietary intake, folate deficiency remains prevalent in humans. Genetically diverse germplasms can potentially be used as parents in breeding programs and also for understanding the folate regulatory network. Therefore, we investigated the natural genetic diversity of folates and their physiological regulation in pak choi (Brassica rapa subsp. Chinensis) germplasm. The total folate concentration ranged from 52.7 μg 100 gFW–1 to 166.9 μg 100 gFW–1, with 3.2-fold variation. The main folate vitamer was represented by 5-CH3-H4folate, with 4.5-fold variation. The activities of GTP cyclohydrolase I and aminodeoxy chorismate synthase, the first step of folate synthesis, were high in high folate accessions and low in low folate accessions. Analysis of the transcription levels of 11 genes associated with folate metabolism demonstrated that the difference in folate concentrations may be primarily controlled at the post-transcriptional level. A general correlation between total folate and their precursors was observed. Folate diversity and chlorophyll content were tightly regulated through the methyl cycle. The diverse genetic variation in pak choi germplasm indicated the great genetic potential to integrate breeding programs for folate biofortification and unravel the physiological basis of folate homeostasis in planta.


Sign in / Sign up

Export Citation Format

Share Document