Semicrystalline Polyimides Based on Controlled Molecular Weight Phthalimide End-Capped 1,3-Bis(4-aminophenoxy)benzene and 3,3‘,4,4‘-Biphenyltetracarboxylic Dianhydride:  Synthesis, Crystallization, Melting, and Thermal Stability

1997 ◽  
Vol 30 (4) ◽  
pp. 1012-1022 ◽  
Author(s):  
Srivatsan Srinivas ◽  
Franklin E. Caputo ◽  
Marvin Graham ◽  
Slade Gardner ◽  
Richey M. Davis ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gengxin Hao ◽  
Yanyu Hu ◽  
Linfan Shi ◽  
Jun Chen ◽  
Aixiu Cui ◽  
...  

AbstractThe physicochemical properties of chitosan obtained from the shells of swimming crab (Portunus trituberculatus) and prepared via subcritical water pretreatment were examined. At the deacetylation temperature of 90 °C, the yield, ash content, and molecular weight of chitosan in the shells prepared via subcritical water pretreatment were 12.2%, 0.6%, and 1187.2 kDa, respectively. These values were lower than those of shells prepared via sodium hydroxide pretreatment. At the deacetylation temperature of 120 °C, a similar trend was observed in chitosan molecular weight, but differences in chitosan yield and ash content were not remarkable. At the same deacetylation temperature, the structures of chitosan prepared via sodium hydroxide and subcritical water pretreatments were not substantially different. However, the compactness and thermal stability of chitosan prepared via sodium hydroxide pretreatment was lower than those of chitosan prepared via subcritical water pretreatment. Compared with the chitosan prepared by sodium hydroxide pretreatment, the chitosan prepared by subcritical water pretreatment was easier to use in preparing oligosaccharides, including (GlcN)2, via enzymatic hydrolysis with chitosanase. Results suggested that subcritical water pretreatment can be potentially used for the pretreatment of crustacean shells. The residues obtained via this method can be utilized to prepare chitosan.


2020 ◽  
Vol 32 (7) ◽  
pp. 801-822 ◽  
Author(s):  
John J La Scala ◽  
Greg Yandek ◽  
Jason Lamb ◽  
Craig M Paquette ◽  
William S Eck ◽  
...  

4,4′-Methylenedianiline (MDA) is widely used in high-temperature polyimide resins, including polymerization of monomer reactants-15. The toxicity of MDA significantly limits the manufacturability using this resin. Modifying the substitution and electronics of MDA could allow for the reduction of toxicity while maintaining the high-performing properties of the materials derived from the modified MDA. The addition of a single methyl substituent, methoxy substituent, location of these substituents, and location of the amine relative to the phenolic bridge were modified as were other non-aniline diamines. Various anilines were condensed with paraformaldehyde under acidic conditions to yield dianilines. These dianilines and diamines were reacted with nadic anhydride and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride in methanol to form the polyamic acid oligomers and heated at elevated temperature to form polyimide oligomers. It was found that the molecular weight of the oligomers derived from MDA alternatives was generally lower than that of MDA oligomers resulting in lower glass transition temperatures ( T gs) and degradation temperatures. Additionally, methoxy substituents further reduce the T g of the polymers versus methyl substituents and reduce the thermal stability of the resin. Methyl-substituted alternatives produced polyimides with similar T gs and degradation temperatures. The toxicity of the MDA alternatives was examined. Although a few were identified with reduced toxicities, the alternatives with properties similar to that of MDA also had high toxicities.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87013-87020 ◽  
Author(s):  
Kaiju Luo ◽  
Yan Wang ◽  
Junrong Yu ◽  
Jing Zhu ◽  
Zuming Hu

Aromatic furanic polyamides with relatively high molecular weight were synthesized, and good thermal stability and mechanical properties were demonstrated.


2017 ◽  
Vol 898 ◽  
pp. 2181-2186
Author(s):  
Jing Li ◽  
Jun Rong Yu ◽  
Jing Zhu ◽  
Yan Wang ◽  
Zu Ming Hu ◽  
...  

Solution blow spinning (SBS) is an innovative nanofiber fabricating method with high productivity. 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) / p-phenylenediamine (PDA) / 4,4'-oxydianiline (ODA) co-polyimide nanofiber membrane was efficiently produced by SBS followed by imidization from precursor polyamic acid (PAA) nanofiber membrane in the paper. The morphologies and structures of the obtained PAA and PI nanofiber membrane were examined by SEM and FT-IR. The effect of thermal imidization temperature on the tensile property was investigated. The thermal stability of polyimide nanofiber membrane was also characterized by TGA.


Author(s):  
Cornel Tarabasanu Mihaila ◽  
Lavinia G. Hinescu ◽  
Cristian Boscornea ◽  
Carmen Moldovan ◽  
Mihai E. Hinescu

The paper presents the synthetic routes for obtaining some organic semiconductors and their characterization in order to use in thin film deposition for gas sensing devices. An original technique was used to control the molecular weight of polymeric phthalocyanine. We have fabricated devices consisting of evaporated thin films of copper, nickel, and iron phthalocyanines onto interdigital electrodes and estimated the electrical conductivity by in-situ measurements. The films were evaporated onto substrates (gold or aluminum) which were entirely integrated in the standard CMOS (capacitor metal oxide semiconductor) technology. The objectives of this work were to improve the synthesis methods of organic metal-complex tetraizoindoles and their polymers and to evaluate their electrical response and thermal stability as evaporated thin films. We have also investigated the variation of polymers conductivity and sublimation yield with the average molecular weight. We found that for polymeric phthalocyanines, the thermal stability was higher than for Pcs monomers. The stability of polymers increased with the average molecular weight.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Qingyun Zeng ◽  
Liquan Ou ◽  
Guowei Zhao ◽  
Ping Cai ◽  
Zhenggen Liao ◽  
...  

Solid dispersion (SD) is the effective approach to improve the dissolution rate and bioavailability of class II drugs with low water solubility and high tissue permeability in the Biopharmaceutics Classification System. This study investigated the effects of polyethylene glycol (PEG) molecular weight in carrier material PEG palmitate on the properties of andrographolide (AG)-SD. We prepared SDs containing the poorly water-soluble drug AG by the freeze-drying method. The SDs were manufactured from two different polymers, PEG4000 palmitate and PEG8000 palmitate. The physicochemical properties of the AG-SDs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, dissolution testing, and so on. We found that AG-PEG4000 palmitate-SD and AG-PEG8000 palmitate-SD were similar in the surface morphology, specific surface area, and pore volume. Compared with the AG-PEG4000 palmitate-SD, the intermolecular interaction between PEG8000 palmitate and AG was stronger, and the thermal stability of AG-PEG8000 palmitate-SD was better. In the meanwhile, the AG relative crystallinity was lower and the AG dissolution rate was faster in AG-PEG8000 palmitate-SD. The results demonstrate that the increasing PEG molecular weight in the PEG palmitate can improve the compatibility between the poorly water-soluble drug and carrier material, which is beneficial to improve the SD thermal stability and increases the dissolution rate of poorly water-soluble drug in the SD.


Sign in / Sign up

Export Citation Format

Share Document