[(1R)-1-acetamido-3-(methylthio)propyl]boronic acid and the x-ray structure of its ethylene glycol ester

1989 ◽  
Vol 8 (3) ◽  
pp. 726-729 ◽  
Author(s):  
Donald S. Matteson ◽  
T. John. Michnick ◽  
Roger D. Willett ◽  
Curtis D. Patterson
ChemInform ◽  
1989 ◽  
Vol 20 (25) ◽  
Author(s):  
D. S. MATTESON ◽  
T. J. MICHNICK ◽  
R. D. WILLETT ◽  
C. D. PATTERSON

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Santanu Dey ◽  
Pradipta Chakraborty ◽  
Dhiraj Kumar Rana ◽  
Subhamay Pramanik ◽  
Soumen Basu

AbstractWe have synthesized carbon-supported silver (Ag/C) nanobars by a simple surfactant-free hydrothermal method using glucose as the reducing reagent as well as the source of carbon in Ag/C nanobars. Physicochemical characterization of the materials was performed by X-ray Diffraction (XRD), field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The XRD pattern confirmed the presence of a pure metallic silver phase. No carbon phase was detected, which indicates that the carbon exists mainly in the amorphous form. The electrocatalytic activity of Ag/C in different electrolyte solutions such as 0.5 M NaOH, 0.5 M NaOH + 1 M ethanol (EtOH), 0.5 M NaOH + 1 M ethylene glycol (EG), and 0.5 M NaOH + 0.01 M NaBH4 (sodium borohydride) was studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) study. Alcohol tolerance of the catalysts was also established in the presence of ethanol and ethylene glycol. The forward-to-backward current ratio from cyclic voltammetry (CV) study of Ag/C-20 (20 h) in 0.5 M NaOH + 1 M ethanol solution at 100 mV s−1 scan rate is 4.13 times higher compared to that of Ag/C-5 (5 h). Hence, Ag/C-20 is a better candidate for the tolerance of ethanol. In the presence of ethylene glycol (1 M) in 0.5 M NaOH solution, it is obtained that the forward-to-backward current ratio at the same scan rate for Ag/C-20 is lower than that in the presence of ethanol. The durability of the catalyst was studied by chronoamperometry measurement. We studied the electrochemical kinetics of Ag/C catalysts for borohydride oxidation in an alkaline medium. The basic electrochemical results for borohydride oxidation show that Ag/C has very well strength and activity for direct borohydride oxidation in an alkaline medium. The reaction of borohydride oxidation with the contemporaneous BH4−. hydrolysis was noticed at the oxidized silver surface. Among all the synthesized Ag/C catalysts, Ag/C-20 exhibited the best electrocatalytic performance for borohydride oxidation in an alkaline medium. The activation energy and the number of exchange electrons at Ag/C-20 electrode surface for borohydride electro-oxidation were estimated as 57.2 kJ mol−1 and 2.27, respectively.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Selvakumar Dhanasingh ◽  
Dharmaraj Nallasamy ◽  
Saravanan Padmanapan ◽  
Vinod Padaki

AbstractThe influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.


2008 ◽  
Vol 8 (11) ◽  
pp. 5776-5780 ◽  
Author(s):  
C. Manikyala Rao ◽  
V. Sudarsan ◽  
R. S. Ningthoujam ◽  
U. K. Gautam ◽  
R. K. Vatsa ◽  
...  

ZnGa2O4 nanoparticles doped with lanthanide ions (Tb3+ and Eu3+) were prepared at a low temperature of 120 °C based on urea hydrolysis in ethylene glycol medium. X-ray diffraction studies have confirmed that strain associated with nanoparticles changes as Tb3+ gets incorporated in the ZnGa2O4 lattice. Based on steady state emission and excitation studies of ZnGa2O4:Tb nanoparticles, it has been inferred that ZnGa2O4 host is characterized by a broad emission around 427 nm and there exists energy transfer between the host and Tb3+ ions. Unlike this, for ZnGa2O4:Eu nanoparticles, very poor energy transfer between the host and Eu3+ ions is observed. These nanoparticles when coated with ligands like oleic acid results in their improved dispersion in organic solvents like chloroform and dichloromethane.


POSITRON ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 14
Author(s):  
Suci Aprilia ◽  
Erry Koryanti ◽  
Idha Royani

Telah dilakukan pembuatan molecular imprinted polymer (MIP) nano karbaril dengan metode cooling-heating. Pembuatan MIP nano karbaril bertujuan untuk mendapatkan material sensor yang potensial dalam aplikasinya. Dalam penelitian ini, bahan aktif karbaril di-milling dengan variasi waktu 10 menit dan 15 menit. Pada proses polimerisasi melibatkan templat nano karbaril, methacrylic acid (MAA) sebagai monomer fungsional, ethylene glycol dimathacrylate (EDMA) sebagai crosslinker, benzoil peroksida (BPO) sebagai inisiator, dan acetonitril sebagai pelarut yang disintesis menggunakan metode cooling-heating. Dengan cara yang sama, non-imprinted polymer (NIP) juga dibuat sebagai polimer kontrol.  NIP merupakan polimer yang dibuat dengan komposisi dan cara yang sama dengan MIP, namun tidak ditambahkan nano karbaril sebagai zat aktif. Pembuangan templat pada proses ekstraksi sangat berperan penting untuk menghasilkan material sensor yang baik. MIP, polimer, dan NIP yang dihasilkan di karakterisasi menggunakan Fourier transform infrared (FTIR) dan sampel terbaik dideteksi lebih lanjut dengan uji x-ray diffraction (X-RD), dan scanning electron microscope (SEM). Hasil FTIR menunjukkan bahwa gugus fungsi spesifik nano karbaril pada NIP tidak tampak bila dibandingkan dengan spektra MIP, dan terjadi penurunan persen transmitansi pada polimer dan peningkatan % transmitansi pada MIP. Hal ini menjelaskan bahwa terjadi penurunan konsentrasi nano karbaril pada MIP setelah proses ektraksi. Hasil X-RD menunjukkan ukuran kristal yaitu 9,16 Å. Hasil SEM menunjukkan bahwa jumlah pori tercetak dengan ukuran ≤100 nm yaitu 383 pori.  Data ini mengindikasikan bahwa MIP nano karbaril potensial untuk diaplikasikan sebagai material sensor.


2018 ◽  
Vol 9 (1) ◽  
pp. 111 ◽  
Author(s):  
Chenguang Ma ◽  
Xianhong Wang ◽  
Shixia Zhan ◽  
Xuemei Li ◽  
Xiao Liu ◽  
...  

Photocatalytic activity of monosized AuZnO composite nanoparticles with different compositions were synthesized by the one-pot polyol procedure, using the triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-blockpoly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The structure and morphology of the composite nanoparticles were analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), selected area electron diffraction (SAED), a transmission electron microscope (TEM) and high resolution transmission electron microscopy (HRTEM). The characterization showed that the AuZnO composite nanoparticles were spherical, with narrow particle size distribution and high crystallinity. The Fourier transform infrared spectroscopy (FTIR) study confirms the PEO-PPO-PEO molecules on the surface of the composite nanoparticles. The investigations by ultraviolet-visible light absorbance spectrometer (UV-Vis) and photoluminescence spectrophotometer (PL) demonstrate well the dispersibility and excellent optical performance of the AuZnO composite nanoparticles. Photocatalytic activity and reusability of the AuZnO nanoparticles in UV and visible light regions was evaluated by the photocatalytic degradation of Rhodamine B (RhB). The experimental results show that the AuZnO composite nanoparticles with a suitable amount of Au loading have stability and improved photocatalytic activity. AuZnO composite nanoparticles are effective and stable for the degradation of organic pollutants in aqueous solution.


2010 ◽  
Vol 173 ◽  
pp. 102-105 ◽  
Author(s):  
Khairul Arifah Saharudin ◽  
Srimala Sreekantan

In this paper, anodization of Ti foil was carried out in ethylene glycol (EG) containing 5 wt% NH4F solution and 0 to 1.5 wt% of water at 50 V for 60 min. The pH of the bath was kept constant at ~pH7. The crystal structure was studied by X-Ray Diffraction (XRD) analysis, and the morphology was observed via field emission scanning electron microscopy (FESEM). TiO2 nanotube with aspect ratio of 100 was obtained in EG containing less than 1wt % water. The nanotubes wall was very smooth. Increasing the water content > 1wt % results in short nanotubes of approximately 6.2μm with aspect ratio of 62. As anodized, nanotubes were amorphous and annealed at 400 °C promote 100 % anatase phase. Photocatalytic activity of the nanotubes produced at different water content was also evaluated by the degradation of methyl orange and the detail of the observation was discussed thoroughly in this paper.


Clay Minerals ◽  
1973 ◽  
Vol 10 (2) ◽  
pp. 71-78 ◽  
Author(s):  
K. Kimbara ◽  
S. Shimoda ◽  
T. Sudo

AbstractAn unusual chlorite has been collected from amygdales in Miocene volcanic rock found at Taiheizan, Akita Prefecture, Japan. The mineral shows subtle variations from other chlorites and related minerals. These are: (a) no apparent expansion with water or ethylene glycol, (b) negligible or no collapse after NH4-saturation or heating at about 300°C, (c) a slow decrease in the basal spacing on heating from approximately 400°C to 760°C, (d) a small amount of low temperature or capillary water and (e) a DTA curve with a vermiculite-like system of peaks.The mineral is identified as a highly chloritic vermiculite with a small proportion of imperfect hydroxy interlayer.


Sign in / Sign up

Export Citation Format

Share Document