Low dietary protein increases vitamin A absorption and deposition into milk in periparturient rats

Author(s):  
Anne H. Laarman ◽  
Jason S. Watts ◽  
Farhad Foroudi ◽  
Pedram Rezamand

Abstract. Our objective was to study the effect of differing dietary crude protein and vitamin A on retinoid metabolism in a periparturient rat model. Sixty female rats, approximately 21 d before parturition, were fed rations containing either low protein (13%; LP) or high protein (22%; HP) crude protein and either low vitamin A (3 IU/g; LA) or high vitamin A (5 IU/g; HA), yielding treatments HPHA, HPLA, LPHA, and LPLA. Samples were collected at d −14, d +3, and +10 relative to parturition and analyzed for all-trans retinoid acid (RA), 13-Cis RA, and retinol. At d −14, serum all-trans RA concentrations decreased compared to baseline. At both d +3 and d +10, serum retinol increased and liver 13-Cis RA decreased. In the small intestine, 13-cis RA was higher in HPHA than HPLA pre-partum (0.93±0.12 vs. 0.40±0.12 ng/ml, P=0.04). Post-partum, 13-cis RA was lower in high vitamin HPHA and LPHA groups (0.35±0.06 and 0.38±0.06 ng/ml) than in low vitamin A HPLA and LPLA treatments (0.50±0.06 and 1.32±0.06 ng/ml, P<0.01). In rats fed LA diets, TNF-alpha expression tended to be lower in HPLA than LPLA groups on day +3 (0.69±0.34 vs 1.00±0.52, P=0.08), but not day +10 (0.56±0.25 vs. 1.00±0.49 Fold Change, P>0.10). Retinoids accumulated during pregnancy and were mobilized during lactation. The sequestration of retinoids was increased when dietary protein content was low. Further studies are needed to investigate how retinoid metabolism could be manipulated to improve vitamin A delivery to milk.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Dong Wang ◽  
Guoshun Chen ◽  
Lili Song ◽  
Mingjie Chai ◽  
Yongfeng Wang ◽  
...  

Diets containing different crude protein levels (16%, 14%, and 12%) were created to feed Bamei pigs in order to study the effect of these compositions on intestinal colonies. Therefore, 27 healthy Bamei pigs of similar weight ( 20.99   kg ± 0.16   kg ) were selected and randomly divided into three groups for microbial diversity analysis. The results of this study show that microbial diversities and abundances in Bamei pig jejunum and caecum samples after feeding with different dietary protein levels were significantly different. Dietary crude protein level exerted no significant effect on the Shannon index for cecum microbes in these pigs, while Simpson, ACE, and Chao1 indices for group I were all significantly higher than those of either the control group or group II ( P < 0.05 ). Indeed, data show that microbial diversities and abundances in the 14% protein level group were higher than those in either the 16% or 12% groups. Dominant bacteria present in jejunum and cecum samples given low-protein diets were members of the phyla Firmicutes and Bacteroidetes. Data show that as dietary crude protein level decreases, representatives of the microbial flora genus Lactobacillus in jejunum and cecum samples gradually increases. Values for the KEGG functional prediction of microbial flora at different dietary protein levels also show that genes of jejunum and cecum microorganisms were mainly enriched in the “metabolism” pathway and indicate that low protein diets increase intestinal metabolic activity. Therefore, we recommend that Bamei pig dietary protein levels are reduced 2% from their existing level of 16% crude protein. We also suggest that essential synthetic amino acids (AA) are added to optimize this ideal protein model as this will increase intestinal flora diversity in these pigs and enhance health. These changes will have a positive effect in promoting the healthy growth of Bamei pigs.


2003 ◽  
Vol 2003 ◽  
pp. 177-177
Author(s):  
B. Dastar ◽  
A. Golian

Protein is one of the most expensive portion of a broiler chicken diet. Overfeeding of protein may reduce broiler production profit as well as polluting soil through extra nitrogen excretion. Many attempts have been made to reduce dietary crude protein (CP) level with no adverse effect on broiler performance, as a result protein per se is no longer a requirement for growing chicken. Controversial results have been published with regard to lowering dietary CP level. The purpose of these studies was to pinpoint out the lowest possible dietary protein level when supplemental indispensable amino acids are maintained in a practical corn-soy diet.


1993 ◽  
Vol 70 (3) ◽  
pp. 667-678 ◽  
Author(s):  
R. W. Rosebrough ◽  
J. P. McMurtry

Male broiler chickens growing from 7 to 35d were fed on a diet containing 150g crude protein (N × 6·25)/kg diet supplemented with lysine to equal that in diets containing 166, 183 and 200g crude protein/kg diet (Expt 1). A second group of male broiler chickens growing over the same period were fed on a diet containing 120g crude protein/kg supplemented with lysine, arginine, tryptophan, threonine and isoleucine equal to that in diets containing 144, 172 and 200g crude protein/kg diet (Expt 2). Growth was improved by lysine supplementation but not to the level attained by feeding 200g crude protein/kg (Expt 1). Lysine, arginine, tryptophan, threonine and isoleucine supplementation of a low-protein diet also improved growth, but growth again fell short of that attained by feeding a diet containing 200g crude protein/kg. Plasma insulin-like growth factor-1 and thyroxine concentrations increased and triiodothyronine decreased as the crude protein level increased from 150 to 200g/kg diet. Supplemental lysine did not affect plasma levels of these hormones. Although dietary crude protein levels noticeably changed rates ofin vitrolipogenesis, changing either the level of a single limiting amino acid or the levels of several limiting amino acids did not change lipogenesis.


1985 ◽  
Vol 40 (1) ◽  
pp. 39-45 ◽  
Author(s):  
J. S. Gonzalez ◽  
J. J. Robinson ◽  
I. McHattie

ABSTRACTThirty-six individually-penned ewes (mean live weight 69 kg), each suckling two lambs, were given one of three diets containing either 128 (low), 155 (medium) or 186 (high) g crude protein (CP) per kg dry matter. All diets contained (g/kg), milled hay, 570; molasses, 95; and a barley/fish meal concentrate, 330. The three protein concentrations were achieved by adjusting the proportions of barley and fish meal in the concentrate. Each diet was given at daily metabolizable energy (ME) intakes of 19, 23 and 27 MJ. Mean daily yields of milk in weeks 3 to 8 of lactation for ewes given the diet with the low concentration of crude protein increased from 2·32 kg at 19 MJ ME to 2·53 kg at 27 MJ. Corresponding values for the medium concentration of CP were 2·49 and 2·67 kg and for the high concentration 2·52 and 3·09 kg (P < 0·05 for differences between ME intakes and differences between dietary protein concentrations). For milk composition, interactions between the concentration of dietary protein and level of ME intake were not statistically significant but the main treatment effects were significant, with the protein concentration in milk increasing from 49·6 g/kg for ewes given the low concentration of dietary protein to 54·1 g/kg for those given the high (P < 0·001). Corresponding values for protein concentration in milk for the lowest and highest energy intake were 51·2 and 53·4 g/kg (P < 0·05). Losses of tissue protein were variable but decreased from 26 g/day for ewes given the low-protein diet to 8 g/day for those given the high. In discussing the responses in milk yield to dietary protein and ME intake attention is drawn to the modifying influence of the energy contributed from body tissue.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Tao ◽  
Bo Deng ◽  
Qizhi Yuan ◽  
Xiaoming Men ◽  
Jie Wu ◽  
...  

Low protein diets are commonly used in the growing-finishing pig stage of swine production; however, the effects of low dietary protein on the intestinal microbiota and their metabolites, and their association with pig sex, remain unclear. The present study aimed to assess the impact of a low crude protein (CP) diet on the gut microbiome and metabolome, and to reveal any relationship with sex. Barrows and gilts (both n = 24; initial body = 68.33 ± 0.881 kg) were allocated into two treatments according to sex. The four groups comprised two pairs of gilts and barrows fed with a high protein diet (CP 17% at stage I; CP 13% at stage II) and a low protein diet (CP 15% at stage I; CP 11% at stage II), respectively, for 51 d. Eight pigs in each group were slaughtered and their colon contents were collected. Intestinal microbiota and their metabolites were assessed using 16S rRNA sequencing and tandem mass spectrometry, respectively. The low protein diet increased intestinal microbiota species and richness indices (P &lt; 0.05) in both sexes compared with the high protein diet. The sample Shannon index was different (P &lt; 0.01) between barrows and gilts. At the genus level, unidentified Clostridiales (P &lt; 0.05), Neisseria (P &lt; 0.05), unidentified Prevotellaceae (P &lt; 0.01) and Gracilibacteria (P &lt; 0.05) were affected by dietary protein levels. The relative abundance of unidentified Prevotellaceae was different (P &lt; 0.01) between barrows and gilts. The influence of dietary protein levels on Neisseria (P &lt; 0.05), unidentified Prevotellaceae (P &lt; 0.01) and Gracilibacteria (P &lt; 0.05) were associated with sex. Metabolomic profiling indicated that dietary protein levels mainly affected intestinal metabolites in gilts rather than barrows. A total of 434 differentially abundant metabolites were identified in gilts fed the two protein diets. Correlation analysis identified that six differentially abundant microbiota communities were closely associated with twelve metabolites that were enriched for amino acids, inflammation, immune, and disease-related metabolic pathways. These results suggested that decreasing dietary protein contents changed the intestinal microbiota in growing-finishing pigs, which selectively affected the intestinal metabolite profiles in gilts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257417
Author(s):  
Ningning Zhang ◽  
Zhanwei Teng ◽  
Pengtao Li ◽  
Tong Fu ◽  
Hongxia Lian ◽  
...  

The purpose of this study was to investigate the effects of oscillating crude protein (CP) concentration diet on the nitrogen utilization efficiency (NUE) of calves and determine its mechanism. Twelve Holstein calves were assigned randomly into static protein diet (SP, 149 g/kg CP) and oscillating protein diet (OP, 125 and 173 g/kg CP diets oscillated at 2-d intervals) groups. After 60 days of feeding, the weights of total stomach, rumen and omasum tended to increase in calves fed OP. The apparent crude fat digestibility, NUE and energy metabolism also increased. In terms of urea-N kinetics evaluated by urea-15N15N isotope labeling method, the urea-N production and that entry to gastrointestinal tended to increase, and urea-N reused for anabolism increased significantly in calves fed OP during the low protein phase. These data indicate that urea-N recycling contributed to improving NUE when dietary protein concentration was low. In addition, the differentially expressed genes in rumen epithelium and the rumen bacteria involved in protein and energy metabolism promoted the utilization of dietary protein in calves fed OP.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2092
Author(s):  
Zhenguo Yang ◽  
Tianle He ◽  
Gifty Ziema Bumbie ◽  
Hong Hu ◽  
Qingju Chen ◽  
...  

The purpose of this experiment was to evaluate the effects of low protein corn-soybean meal-based diets on fecal CP, amino acid (AA) flow amount, AA digestibility and fecal and ileal microbial AA composition in growing pigs. Eighteen pigs (initial body weight = 30 ± 1.35) were randomly divided into three groups and fed with basal diets with CP levels of 12%, 15% and 18%, respectively. The Lys, Met + Cys, Thr and Trp level in the 12% CP and 15% CP groups is the same as 18% CP group by the addition of four crystalline Lys, Met + Cys, Thr and Trp to the diet. The results showed that with the decrease of dietary CP level from 18% to 12%, the fecal total nitrogen (N), CP and total AA (TAA) flow amount decreased linearly (p < 0.05). Dry matter (DM) digestibility, CP digestibility, TAA digestibility, essential amino acid (EAA) digestibility and non-essential amino acid (NEAA) digestibility increased linearly with the decrease of dietary CP concentration from 18% to 12%. Compared with 18% CP group, the flow amount of Asp, Ser, Glu, Gly, Tyr, Val, Leu and Phe in feces of pigs in the 15% CP group and 12% CP group decreased significantly, while the flow amount of Arg in the 15% CP group was lower than that in the 18% CP group and 12% CP group. The fecal microbial N and AA of the 15% CP group were higher than those of the 18% CP and 12% CP groups. Fecal TAA flow amount decreased linearly with the decrease of the dietary CP levels from 18% to 12%. Fecal TAA and NEAA flow amount also decreased linearly with the decrease of dietary CP level from 18% to 12%. Except for Glu, Gly, Met, Tyr, Thr and Phe, there were significant differences among the three groups in the composition of 17 kinds of AAs in fecal microorganisms. Among the 17 AA compositions of ileal microorganisms, except Tyr and Lys, the other AAs were significantly different among the three groups (p < 0.05)


1983 ◽  
Vol 36 (2) ◽  
pp. 185-192 ◽  
Author(s):  
R. G. Campbell ◽  
A. C. Dunkin

ABSTRACTThirty-six entire male pigs were used to investigate the effects of two levels of dietary crude protein (150 and 220 g/kg) each in combination with four levels of feeding (1·0, 1·32, 1·64 MJ digestible energy/kg M0·73per day andad libitum) on growth, body composition and energy utilization over the live-weight range 7 to 19 kg.Growth rate responded linearly (P< 0·001) to increasing energy intake but was depressed (P< 0·05) when dietary crude protein was reduced from 220 to 150 g/kg.Raising digestible energy intake increased and decreased respectively the proportions of fat and protein in the empty body at 19 kg live weight. However, the magnitude of the response of both components to change in digestible energy intake was reduced in the case of pigs fed the lower protein diet.Total energy retained and that retained as fat and as protein responded linearly (P< 0·001) to change in digestible energy intake of either diet. Extrapolation of the regression of total energy retained on digestible energy intake yielded a digestible energy requirement for maintenance of 510 kJ/kg M0·75per day, which was unaffected by level of dietary protein.The partial efficiencies of protein utilization, estimated from the regressions of protein deposition (g/day) on protein intake (g/day), were 0·616 and 0·411 for pigs given the diets containing 150 and 220 g crude protein per kg respectively.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 906 ◽  
Author(s):  
Cortese ◽  
Segato ◽  
Andrighetto ◽  
Ughelini ◽  
Chinello ◽  
...  

This study aimed to evaluate the effect of decreasing dietary crude protein (CP) on the performance of finishing Charolais bulls in the Italian rearing system. Animals were fed two diets, differing only in the CP level (low protein (LP), 13.5% CP versus control (CON), 15.0% CP). Dry matter (DM) intake (DMI) and animals’ weights were recorded to obtain average daily gain (ADG) and feed conversion rate (FCR). Feed and fecal samples were collected to evaluate digestibility of diet components. Daily cost of the ration (DRC), feed cost per kg of daily weight gain (CDG) and daily gross margin (DGM) were calculated to analyze the possible benefits of decreasing the protein level. Meat quality analyses were also conducted. Higher DMI (10.6 versus 10 kg/d; p < 0.05) and ADG (1.47 versus 1.36 kg/d; p < 0.05) were observed for CON. No differences in FCR or digestibility were found. Even if the DRC was lower (p < 0.05) for the LP diet (2.26 versus 1.97 €; CON versus LP), no difference was reported for CDG and DGM. Meat lightness and redness were significantly lower and higher in the LP, respectively. To conclude, the CP requirement in these rearing conditions appeared to be higher than 13.5%.


Sign in / Sign up

Export Citation Format

Share Document