scholarly journals Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

Author(s):  
Masahiro Ishibashi ◽  
Chigusa Uchiumi ◽  
Minyoung Jung ◽  
Naoki Aizawa ◽  
Kiyoshi Makita ◽  
...  

Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996) , were largely confirmed.

2008 ◽  
Vol 20 (12) ◽  
pp. 2185-2197 ◽  
Author(s):  
Jennifer T. Coull ◽  
Bruno Nazarian ◽  
Franck Vidal

The temporal discrimination paradigm requires subjects to compare the duration of a probe stimulus to that of a sample previously stored in working or long-term memory, thus providing an index of timing that is independent of a motor response. However, the estimation process itself comprises several component cognitive processes, including timing, storage, retrieval, and comparison of durations. Previous imaging studies have attempted to disentangle these components by simply measuring brain activity during early versus late scanning epochs. We aim to improve the temporal resolution and precision of this approach by using rapid event-related functional magnetic resonance imaging to time-lock the hemodynamic response to presentation of the sample and probe stimuli themselves. Compared to a control (color-estimation) task, which was matched in terms of difficulty, sustained attention, and motor preparation requirements, we found selective activation of the left putamen for the storage (“encoding”) of stimulus duration into working memory (WM). Moreover, increased putamen activity was linked to enhanced timing performance, suggesting that the level of putamen activity may modulate the depth of temporal encoding. Retrieval and comparison of stimulus duration in WM selectively activated the right superior temporal gyrus. Finally, the supplementary motor area was equally active during both sample and probe stages of the task, suggesting a fundamental role in timing the duration of a stimulus that is currently unfolding in time.


2020 ◽  
Author(s):  
Jonathan E Peelle ◽  
Brent Spehar ◽  
Michael S Jones ◽  
Sarah McConkey ◽  
Joel Myerson ◽  
...  

In everyday conversation, we usually process the talker's face as well as the sound of their voice. Access to visual speech information is particularly useful when the auditory signal is degraded. Here we used fMRI to monitor brain activity while adults (n = 60) were presented with visual-only, auditory-only, and audiovisual words. As expected, audiovisual speech perception recruited both auditory and visual cortex, with a trend towards increased recruitment of premotor cortex in more difficult conditions (for example, in substantial background noise). We then investigated neural connectivity using psychophysiological interaction (PPI) analysis with seed regions in both primary auditory cortex and primary visual cortex. Connectivity between auditory and visual cortices was stronger in audiovisual conditions than in unimodal conditions, including a wide network of regions in posterior temporal cortex and prefrontal cortex. Taken together, our results suggest a prominent role for cross-region synchronization in understanding both visual-only and audiovisual speech.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5395
Author(s):  
Jose L. Pardo-Vazquez ◽  
Carlos Acuña

Previous works have shown that neurons from the ventral premotor cortex (PMv) represent several elements of perceptual decisions. One of the most striking findings was that, after the outcome of the choice is known, neurons from PMv encode all the information necessary for evaluating the decision process. These results prompted us to suggest that this cortical area could be involved in shaping future behavior. In this work, we have characterized neuronal activity and behavioral performance as a function of the outcome of the previous trial. We found that the outcome of the immediately previous trial (n−1) significantly changes, in the current trial (n), the activity of single cells and behavioral performance. The outcome of trial n−2, however, does not affect either behavior or neuronal activity. Moreover, the outcome of difficult trials had a greater impact on performance and recruited more PMv neurons than the outcome of easy trials. These results give strong support to our suggestion that PMv neurons evaluate the decision process and use this information to modify future behavior.


2020 ◽  
Author(s):  
Soma Nonaka ◽  
Kei Majima ◽  
Shuntaro C. Aoki ◽  
Yukiyasu Kamitani

SummaryAchievement of human-level image recognition by deep neural networks (DNNs) has spurred interest in whether and how DNNs are brain-like. Both DNNs and the visual cortex perform hierarchical processing, and correspondence has been shown between hierarchical visual areas and DNN layers in representing visual features. Here, we propose the brain hierarchy (BH) score as a metric to quantify the degree of hierarchical correspondence based on the decoding of individual DNN unit activations from human brain activity. We find that BH scores for 29 pretrained DNNs with varying architectures are negatively correlated with image recognition performance, indicating that recently developed high-performance DNNs are not necessarily brain-like. Experimental manipulations of DNN models suggest that relatively simple feedforward architecture with broad spatial integration is critical to brain-like hierarchy. Our method provides new ways for designing DNNs and understanding the brain in consideration of their representational homology.


2018 ◽  
Author(s):  
Arafat Angulo-Perkins ◽  
Luis Concha

ABSTRACT Musicality refers to specific biological traits that allow us to perceive, generate and enjoy music. These abilities can be studied at different organizational levels (e.g., behavioural, physiological, evolutionary), and all of them reflect that music and speech processing are two different cognitive domains. Previous research has shown evidence of this functional divergence in auditory cortical regions in the superior temporal gyrus (such as the planum polare), showing increased activity upon listening to music, as compared to other complex acoustic signals. Here, we examine brain activity underlying vocal music and speech perception, while we compare musicians and non-musicians. We designed a stimulation paradigm using the same voice to produce spoken sentences, hummed melodies, and sung sentences; the same sentences were used in speech and song categories, and the same melodies were used in the musical categories (song and hum). Participants listened to this paradigm while we acquired functional magnetic resonance images (fMRI). Different analyses demonstrated greater involvement of specific auditory and motor regions during music perception, as compared to speech vocalizations. This music sensitive network includes bilateral activation of the planum polare and temporale, as well as a group of regions lateralized to the right hemisphere that included the supplementary motor area, premotor cortex and the inferior frontal gyrus. Our results show that the simple act of listening to music generates stronger activation of motor regions, possibly preparing us to move following the beat. Vocal musical listening, with and without lyrics, is also accompanied by a higher modulation of specific secondary auditory cortices such as the planum polare, confirming its crucial role in music processing independently of previous musical training. This study provides more evidence showing that music perception enhances audio-sensorimotor activity, crucial for clinical approaches exploring music based therapies to improve communicative and motor skills.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Ali Yoonessi ◽  
Seyed Amir Hossein Batouli ◽  
Iman Ahmadnezhad ◽  
Hamid Soltanian-zadeh

Background: Addiction is currently one of the problems of human society. Drug abuse is one of the most important issues in the field of addiction. Methamphetamine (crystal) is one of the drugs that has been abused in recent decades. Methods: In this case-control study, 10 individuals aged 20 to 40 years old with at least 2 years of experience of methamphetamine consumption without any history of drug use or other stimulants from clients and drug withdrawal centers in Tehran City, and 10 healthy volunteers were selected. Age, social status, and economic status of addicts were included in the fMRI apparatus, and 90 selected pleasurable, non-pleasurable, and neutral images (IAPS) were displayed by the projector through an event-related method. The playback time of each photo was 3 s, and after this process, the person outside the device, without the time limit selected the enjoyable and unpleasant images. Results: The results showed that there was no significant difference between the groups in terms of age, alcohol use, and smoking history (P < 0.05). There was no significant difference in terms of the age at first use between members of the methamphetamine-dependent group. Also, the methamphetamine-dependent group showed more brain activity in their pre-center and post-center gyrus than the normal (control) group. Conclusions: According to the results obtained in this study, in general, it can be concluded that there are some areas in the brain of addicts that are activated when watching pleasant photos, while these areas are not active in the brains of normal people.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Matsuoka ◽  
Shinsuke Koike ◽  
Yoshihiro Satomura ◽  
Naohiro Okada ◽  
Yukika Nishimura ◽  
...  

Abstract Suicide is a major cause of death in patients with schizophrenia, particularly among those with recent disease onset. Although brain imaging studies have identified the neuroanatomical correlates of suicidal behavior, functional brain activity correlates particularly in patients with recent-onset schizophrenia (ROSZ) remain unknown. Using near-infrared spectroscopy (NIRS) recording with a high-density coverage of the prefrontal area, we investigated whether prefrontal activity is altered in patients with ROSZ having a history of suicide attempts. A 52-channel NIRS system was used to examine hemodynamic changes in patients with ROSZ that had a history of suicide attempts (n = 24) or that lacked such a history (n = 62), and age- and sex-matched healthy controls (n = 119), during a block-design letter fluency task (LFT). Patients with a history of suicide attempts exhibited decreased activation in the right dorsolateral prefrontal cortex compared with those without such a history. Our findings indicate that specific regions of the prefrontal cortex may be associated with suicidal attempts, which may have implications for early intervention for psychosis.


2005 ◽  
Vol 93 (2) ◽  
pp. 1020-1034 ◽  
Author(s):  
Eiichi Naito ◽  
Per E. Roland ◽  
Christian Grefkes ◽  
H. J. Choi ◽  
Simon Eickhoff ◽  
...  

We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.


Sign in / Sign up

Export Citation Format

Share Document