scholarly journals Synoptic variability in the Ross Sea region, Antarctica, as seen from back-trajectory modeling and ice core analysis

2012 ◽  
Vol 117 (D2) ◽  
pp. n/a-n/a ◽  
Author(s):  
B. R. Markle ◽  
N. A. N. Bertler ◽  
K. E. Sinclair ◽  
S. B. Sneed
2021 ◽  
Author(s):  
◽  
Bradley Ross Markle

<p>This thesis investigates synoptic variability in the Ross Sea region, Antarctica and develops geochemical proxies of this variability from an ice core record in Southern Victoria Land. Particular focus is given to the influence of decadal climate oscillations on synoptic conditions and potential records of these oscillations in ice core proxy records as long-­‐term records of these oscillations are important for understanding future climate change. I present an investigation of the joint influence of the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on variability in the Amundsen Sea Low (ASL), a dominant climatological feature that strongly influences the weather in the Ross Sea region. It is shown that the positive phase of each oscillation is associated with significant strengthening of the ASL, while negative phases are associated with a weakening. Through regression analysis I show that a simple linear combination of indices representing these oscillations can explain more than 40% of the geopotential height variance in the AS region at a seasonal scale and over 70% of the variance at an annual scale. These results are consistent with the known mechanisms of ENSO and SAM interaction in the region and show that while SAM is dominant hemispherically, ENSO is only influential in the Pacific Sector. Finally it is demonstrated that a simple model of linear reinforcement and interference between the oscillations describes their influence on the variability in the ASL better than models incorporating more complex interactions. Atmospheric back-­‐trajectory modeling and cluster analysis are used to investigate synoptic variability at the Gawn Ice Piedmont (GIP) ice core site in the Ross Sea Region, Antarctica. I identify two dominant air-­‐mass trajectory clusters: oceanic – cyclonic and continental trajectories. My analysis shows that oceanic – cyclonic trajectories peak during April (southern hemisphere winter), while continental trajectories reach their maximum during December (summer). A causal association is demonstrated between ENSO and the frequency of oceanic – cyclonic trajectories originating from the Ross Sea region. In contrast, it is shown that the Southern Annular Mode has little influence on the frequency of cyclonic clusters. I then develop proxy records for the synoptic variability using a shallow firn core from the GIP site containing 8 years of geochemical record. Continental trajectories correlate with concentrations of nitrate (NO3), which is sourced from stratospheric air-­‐masses descending over the Antarctic interior. Oceanic – cyclonic trajectory clusters strongly correlate with deuterium excess at seasonal and inter-­‐annual scales, a proxy sensitive to changes in relative humidity and sea surface temperature (SST) in the in the Ross and Amundsen Seas. Decadal variability in the frequency of oceanic – cyclonic trajectories is discussed with respect to ENSO, SAM, and changes in SST and sea ice extent.</p>


2021 ◽  
Author(s):  
◽  
Bradley Ross Markle

<p>This thesis investigates synoptic variability in the Ross Sea region, Antarctica and develops geochemical proxies of this variability from an ice core record in Southern Victoria Land. Particular focus is given to the influence of decadal climate oscillations on synoptic conditions and potential records of these oscillations in ice core proxy records as long-­‐term records of these oscillations are important for understanding future climate change. I present an investigation of the joint influence of the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on variability in the Amundsen Sea Low (ASL), a dominant climatological feature that strongly influences the weather in the Ross Sea region. It is shown that the positive phase of each oscillation is associated with significant strengthening of the ASL, while negative phases are associated with a weakening. Through regression analysis I show that a simple linear combination of indices representing these oscillations can explain more than 40% of the geopotential height variance in the AS region at a seasonal scale and over 70% of the variance at an annual scale. These results are consistent with the known mechanisms of ENSO and SAM interaction in the region and show that while SAM is dominant hemispherically, ENSO is only influential in the Pacific Sector. Finally it is demonstrated that a simple model of linear reinforcement and interference between the oscillations describes their influence on the variability in the ASL better than models incorporating more complex interactions. Atmospheric back-­‐trajectory modeling and cluster analysis are used to investigate synoptic variability at the Gawn Ice Piedmont (GIP) ice core site in the Ross Sea Region, Antarctica. I identify two dominant air-­‐mass trajectory clusters: oceanic – cyclonic and continental trajectories. My analysis shows that oceanic – cyclonic trajectories peak during April (southern hemisphere winter), while continental trajectories reach their maximum during December (summer). A causal association is demonstrated between ENSO and the frequency of oceanic – cyclonic trajectories originating from the Ross Sea region. In contrast, it is shown that the Southern Annular Mode has little influence on the frequency of cyclonic clusters. I then develop proxy records for the synoptic variability using a shallow firn core from the GIP site containing 8 years of geochemical record. Continental trajectories correlate with concentrations of nitrate (NO3), which is sourced from stratospheric air-­‐masses descending over the Antarctic interior. Oceanic – cyclonic trajectory clusters strongly correlate with deuterium excess at seasonal and inter-­‐annual scales, a proxy sensitive to changes in relative humidity and sea surface temperature (SST) in the in the Ross and Amundsen Seas. Decadal variability in the frequency of oceanic – cyclonic trajectories is discussed with respect to ENSO, SAM, and changes in SST and sea ice extent.</p>


2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


2021 ◽  
Author(s):  
Dorothea Elisabeth Moser ◽  
Elizabeth R. Thomas ◽  
Sarah Jackson ◽  
Joel B. Pedro ◽  
Bradley Markle

&lt;p&gt;Climate data from the sub-Antarctic region are extremely sparse, with few records available beyond the instrumental period. Here, we investigate the suitability of the first-ever ice core collected from Young Island, in the NW Ross Sea, to capture changes in climate. Despite the presence of surface melt at this maritime location, our findings indicate that stable water isotope and trace element records can still hold potential for paleoclimate reconstruction. We apply two multi-proxy dating approaches based on winter and summer signatures, develop an ice core chronology, and contextualize our findings using a local automatic weather station and reanalysis data. Subsequently, we draw first conclusions about the surface conditions at Young Island and discuss the site&amp;#8217;s potential for future studies aimed at paleoclimate reconstruction and resolving the effects of surface melt on proxy records.&lt;/p&gt;


2013 ◽  
Vol 9 (6) ◽  
pp. 2789-2807 ◽  
Author(s):  
S. Schüpbach ◽  
U. Federer ◽  
P. R. Kaufmann ◽  
S. Albani ◽  
C. Barbante ◽  
...  

Abstract. In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.


2018 ◽  
Vol 14 (2) ◽  
pp. 193-214 ◽  
Author(s):  
Nancy A. N. Bertler ◽  
Howard Conway ◽  
Dorthe Dahl-Jensen ◽  
Daniel B. Emanuelsson ◽  
Mai Winstrup ◽  
...  

Abstract. High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.


2002 ◽  
Vol 15 (19) ◽  
pp. 2821-2832 ◽  
Author(s):  
K. Dethloff ◽  
M. Schwager ◽  
J. H. Christensen ◽  
S. Kiilsholm ◽  
A. Rinke ◽  
...  

2013 ◽  
Vol 9 (3) ◽  
pp. 2589-2627
Author(s):  
T. Papina ◽  
T. Blyacharchyuk ◽  
A. Eichler ◽  
N. Malygina ◽  
E. Mitrofanova ◽  
...  

Abstract. Different biological proxies such as pollen, cysts, and diatoms were identified and quantified in the upper part of a Belukha ice core from the Russian Altai. The ice core from the Belukha glacier collected in 2001 (4062 m a.s.l., 49°48' N, 86° 34' E) was analyzed with annual resolution in the period 1964–2000. We used daily data of the frequency of synoptic patterns observed in the Northern Hemisphere along with daily data of precipitation to identify the main modern sources of biological proxies deposited at the Belukha glacier. Our analyses revealed that main sources of diatoms in the Belukha ice core are water bodies of the Aral, Caspian, and North Kazakhstan basins. Coniferous trees pollen originated from the taiga forest of the boreal zone of West Siberia and pollen of hardwoods and herbs from steppe and forest steppe vegetation in the Northern Altai and East Kazakhstan. Cysts of algae and spores of inferior plants were transported from local water bodies and forests. The identified source regions of the biological species are supported by back trajectory analyses and are in good agreement with emission source regions of the trace species in the ice core.


1985 ◽  
Vol 7 ◽  
pp. 125-129 ◽  
Author(s):  
C.U. Hammer

Polar ice cores offer datable past snow deposits in the form of annual ice layers, which reflect the past atmospheric composition. Trace substances in the cores are related to the past mid-tropospheric impurity load, this being due to the vast extent of the polar ice sheets (or ice caps), their surface elevations and remoteness from most aerosol sources. Volcanic eruptions add to the rather low background impurity load via their eruptive products. This paper concentrates on the widespread influence on atmospheric impurity loads caused by the acid gas products from volcanic eruptions. In particular the following subjects are discussed: acid volcanic signals in ice cores, latitude of eruptions as derived by ice-core analysis, inter-hemispheric dating of the two polar ice sheets by equatorial eruptions, volcanic deposits in ice cores during the last glacial period and climatic implications.


Sign in / Sign up

Export Citation Format

Share Document