scholarly journals Tracking Deep Sediment Underplating in a Fossil Subduction Margin: Implications for Interface Rheology and Mass and Volatile Recycling

2021 ◽  
Vol 22 (3) ◽  
Author(s):  
C. M. Tewksbury‐Christle ◽  
W. M. Behr ◽  
M. A. Helper
Keyword(s):  
2017 ◽  
Vol 54 (4) ◽  
pp. 265-293 ◽  
Author(s):  
Roger Matson ◽  
Jack Magathan

The Hanna Basin is one of the world’s deeper intracratonic depressions. It contains exceptionally thick sequences of mature, hydrocarbon-rich Paleozoic through Eocene rocks and has the requisite structural and depositional history to be a significant petroleum province. The Tertiary Hanna and Ferris formations consist of up to 20,000 ft of organic-rich lacustrine shale, shaly mudstone, coal, and fluvial sandstone. The Upper Cretaceous Medicine Bow, Lewis, and Mesaverde formations consist of up to 10,000 ft of marine and nonmarine organic-rich shale enclosing multiple stacked beds of hydrocarbon-bearing sandstone. Significant shows of oil and gas in Upper Cretaceous and Paleocene rocks occur in the basin. Structural prospecting should be most fruitful around the edges where Laramide flank structures were created by out-of-the-basin thrust faults resulting from deformation of the basin’s unique 50-mile wide by 9-mile deep sediment package. Strata along the northern margin of the basin were compressed into conventional anticlinal folds by southward forces emanating from Emigrant Trail-Granite Mountains overthrusting. Oil and gas from Pennsylvanian to Upper Cretaceous aged rocks have been found in such structures near the Hanna Basin. Only seven wells have successfully probed the deeper part of the Hanna Basin (not including Anadarko’s #172 Durante lost hole, Sec. 17, T22N, R82W, lost in 2004, hopelessly stuck at 19,700 ft, unlogged and untested). Two of these wells tested gas at commercial rates from Upper Cretaceous rocks at depths of 10,000 to 12,000 ft. Sparse drilling along the Hanna Basin’s flanks has also revealed structures from 3,000 to 7,000 feet deep which yielded significant shows of oil and gas.


2016 ◽  
Vol 22 (8) ◽  
pp. 2688-2701 ◽  
Author(s):  
Jinzhi Ding ◽  
Fei Li ◽  
Guibiao Yang ◽  
Leiyi Chen ◽  
Beibei Zhang ◽  
...  

2016 ◽  
Vol 113 (24) ◽  
pp. E3332-E3340 ◽  
Author(s):  
Beizhan Yan ◽  
Uta Passow ◽  
Jeffrey P. Chanton ◽  
Eva-Maria Nöthig ◽  
Vernon Asper ◽  
...  

The 2010 Deepwater Horizon oil spill resulted in 1.6–2.6 × 1010 grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.


1992 ◽  
Vol 100 (1-3) ◽  
pp. 59-65 ◽  
Author(s):  
Paul A. Rochelle ◽  
John C. Fry ◽  
R. John Parkes ◽  
Andrew J. Weightman

Extremophiles ◽  
2006 ◽  
Vol 10 (3) ◽  
pp. 181-189 ◽  
Author(s):  
Wasu Pathom-aree ◽  
James E. M. Stach ◽  
Alan C. Ward ◽  
Koki Horikoshi ◽  
Alan T. Bull ◽  
...  

1999 ◽  
Vol 56 (8) ◽  
pp. 1452-1460 ◽  
Author(s):  
Heinrich Eisenmann ◽  
Peter Burgherr ◽  
Elisabeth I Meyer

The microbial community of river sediments and their relationship to environmental factors is largely unknown. In this study, the abundance of bacteria, flagellates, ciliates, and Micrometazoa was investigated for eight different sediment types. The sediment types were classified by discharge (stable versus flood period), location (upper versus lower reach), and depth (superficial versus deep sediment layer). Abundances in the lower reach were more than two times higher than in the upper reach but decreased markedly at both sites after flooding. Organism densities were similar between the two sediment layers, although deeper habitats served as potential refugia, as indicated by reduced transport of coarse particles into the deep sediment layer. The organism abundances correlated with concentration of fine organic particles. A habitat templet model was used to classify favourableness and disturbance of the sediment types. For an empirical placement of sediment types in the model, results on abundances, fine organic particles, nutrient concentrations, particle transport, and flood frequency were integrated. Local processes, mainly related to sediment transport, decreased the predicticability of the habitat templets.


2019 ◽  
Vol 20 (3) ◽  
pp. 542 ◽  
Author(s):  
NOUR EL HOUDA HASSEN ◽  
NAFAÂ REGUIGUI ◽  
MOHAMED AMINE HELALI ◽  
NEZHA MEJJAD ◽  
ABDELMOURHIT LAISSAOUI ◽  
...  

The sediment accumulation rate in the Sardinia and Sicily channels in the central part of the Mediterranean Sea was studied by using short-lived radionuclides (210Pb and 137Cs) in two deep sediment cores. Different sedimentation regimes were identified indicating substantial differences in accumulation rates and historical patterns. The 210Pb-derived mean accumulation rate found in the Strait of Sardinia was 0.05 g.cm-2.y-1, lower than that in Sicily Channel (0.1 g.cm-2.y-1) suggesting an inverse correlation with water depth. Excess 210Pb inventories were 24 ± 1 and 6.0 ± 0.4 kBq.m-2, while the fluxes to the sediment were 745 ± 31 and 188 ± 11 Bq.m-2.y-1 in Sicily and Sardinia channels, respectively. 137Cs failed to use for the validation of the established chronologies, while its inventories found 450 Bq.m-2 and 355 Bq.m-2 in the Sicily and Sardinia channel, respectively.


2017 ◽  
Author(s):  
Petter Thureborn ◽  
Yue O.O. Hu ◽  
Andrea Franzetti ◽  
Sara Sjöling ◽  
Daniel Lundin

Numerous investigations of bacterial communities using sequence analysis of environmental DNA have revealed extensive diversity of microbial taxa in an array of different environmental habitats. Community analysis based solely on DNA, however, does not reveal whether the detected community members are actively contributing to community functioning, or whether they are dormant or remnants of dead cells. This dilemma is of particular concern when analyzing microbial community structure of sites with a high degree of deposited matter, such as marine sediments. For example, the Baltic Sea’s deepest point, the Landsort Deep, consists of anoxic sediments with a large deposition of allochthonous organic matter from the highly stratified 460 m water column above. Our previous metagenomics results indicated the presence of potential obligately aerobic and phototrophic microorganisms in the Landsort Deep sediment. To further elucidate which taxa may contribute to ecosystem function at this site, we here present three different datasets – rDNA amplicons, rDNA reads from a shotgun metagenome and expressed rRNA from a shotgun metatranscriptome. By comparing the three datasets and the ratios between rRNA and rDNA we seek to estimate the protein synthesis potential of the community members in order to provide an indication of what taxa may have cellular activity and metabolic potential. The variation in protein synthesis potential was large, both within and between taxa, in the sediment community. Many typically anaerobic taxa, e.g. from Deltaproteobacteria and Euryarchaeota, showed a high protein synthesis potential, while typical aerobes like Flavobacteria showed a low protein synthesis potential. More surprisingly, some common Baltic Sea surface water bacteria also displayed a high protein synthesis potential, suggesting they have an active role in the anoxic sediment ecosystem at 460 m depth. Both filamentous and unicellular Cyanobacteria exhibited very high protein synthesis potential, which implies a more complex role of these bacteria in carbon cycling in the Baltic Sea than previously suggested. Moreover, Mycobacteria, that were abundant in Landsort Deep sediment metagenome compared with other marine sediment metagenomes, showed protein synthesis potentials consistent with a functional role in the sediment community. Our results provide a new window of insight into the complexities of the microbial community of Landsort Deep with implications for the understanding of other anoxic accumulation sediments.


Sign in / Sign up

Export Citation Format

Share Document