scholarly journals Amazon Water Cycle Observed from Space

Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Alice Fassoni-Andrade ◽  
Fabrice Papa ◽  
Rodrigo Paiva ◽  
Sly Wongchuig ◽  
Ayan Fleischmann

Satellite observations offer invaluable insights into hydrological processes and environmental change in the Amazon.

2013 ◽  
Vol 35 (3) ◽  
pp. 577-606 ◽  
Author(s):  
Rolf H. Reichle ◽  
Gabriëlle J. M. De Lannoy ◽  
Barton A. Forman ◽  
Clara S. Draper ◽  
Qing Liu

Author(s):  
Charles Ichoku

Biomass burning is widespread in sub-Saharan Africa, which harbors more than half of global biomass burning activity. These African open fires are mostly induced by humans for various purposes, ranging from agricultural land clearing and residue burning to deforestation. They affect a wide variety of land ecosystems, including forests, woodlands, shrublands, savannas, grasslands, and croplands. Satellite observations show that fires are distributed almost equally between the northern and southern hemispheres of sub-Saharan Africa, with a dipole-type annual distribution pattern, peaking during the dry (winter) season of either hemisphere. The widespread nature of African biomass burning and the tremendous amounts of particulate and gas-phase emissions the fires produce have been shown to affect a variety of processes that ultimately impact the earth’s atmospheric composition and chemistry, air quality, water cycle, and climate in a significant manner. However, there is still a high level of uncertainty in the quantitative characterization of biomass burning, and its emissions and impacts in Africa and globally. These uncertainties can be potentially alleviated through improvements in the spatial and temporal resolutions of satellite observations, numerical modeling and data assimilation, complemented by occasional field campaigns. In addition, there is great need for the general public, policy makers, and funding organizations within Africa to recognize the seriousness of uncontrolled biomass burning and its potential consequences, in order to bring the necessary human and financial resources to bear on essential policies and scientific research activities that can effectively address the threats posed by the combined adverse influences of the changing climate, biomass burning, and other environmental challenges in sub-Saharan Africa.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2227
Author(s):  
Polona Vreča ◽  
Zoltán Kern

Stable (16O, 17O, 18O, 1H, 2H) and radioactive (3H) isotopes in water are powerful tools in the tracking of the path of water molecules in the whole water cycle. In the last decade, a considerable number of studies have been published on the use of water isotopes, and the number continues to grow due to the development of new measurement techniques (i.e., laser absorption spectroscopy) that allow measurements of stable isotope ratios at ever-higher resolutions. Therefore, this Special Issue (SI) has been compiled to address current state-of-the-art water isotope methods, applications, and hydrological process interpretations and to contribute to the rapidly growing repository of isotope data important for future water resource management. We are pleased to present here a compilation of 14 papers reporting the use of water isotopes in the study of hydrological processes worldwide, including studies on the local and regional scales related either to precipitation dynamics or to different applications of water isotopes in combination with other hydrochemical parameters in investigations of surface water, snowmelt, soil water, groundwater, and xylem water to identify the hydrological and geochemical processes.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 770 ◽  
Author(s):  
Xue Qiu ◽  
Mingjun Zhang ◽  
Shengjie Wang ◽  
Athanassios A. Argiriou ◽  
Rong Chen ◽  
...  

Hydrological processes produce effects on water resources in inland mountainous regions. To perform a comprehensive investigation of the important segments of the water cycle, using the Qilian Mountains as a case study, precipitation, soil, plant, river, and groundwater were collected during the plant growing season of 2016. All samples were collected on a monthly basis, except precipitation, which was collected on a per event basis. The results showed that: the “temperature effect” was apparent, which suggested a drier climate background; there were differences in the slope and intercept of the local meteoric water line, using different regression methods; and the δ18O of soil water varied greatly in the topsoil, tended to be similar in the deep soil, and became increasingly depleted as the soil depth increased. The responses of the soil water isotopes to precipitation pulses had different boundaries. The major water source for Caragana Fabr. in no-precipitation month was located in the 0–30 cm soil layer, but was different in months when precipitation occurred. Overall, the findings from the stable isotopes provide insights into hydrological processes and offer a platform to understand mountainous water cycle in arid areas.


Author(s):  
M. J. Ascott ◽  
J. P. Bloomfield ◽  
I. Karapanos ◽  
C. R. Jackson ◽  
R. S. Ward ◽  
...  

Abstract Effective management of groundwater resources during drought is essential. How is groundwater currently managed during droughts, and in the face of environmental change, what should be the future priorities? Four themes are explored, from the perspective of groundwater management in England (UK): (1) integration of drought definitions; (2) enhanced fundamental monitoring; (3) integrated modelling of groundwater in the water cycle; and (4) better information sharing. Whilst these themes are considered in the context of England, globally, they are relevant wherever groundwater is affected by drought.


2016 ◽  
Author(s):  
Oliver López ◽  
Rasmus Houborg ◽  
Matthew F. McCabe

Abstract. Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological consistency in these environments, suggesting the need for continued efforts in improving satellite observations, particularly for the retrieval of evaporation, and the need to more directly account for anthropogenic influences such as agricultural irrigation into our large scale water cycle studies.


Ecology ◽  
2019 ◽  
Author(s):  
Paul Barnes

Water is one of the most important environmental factors limiting the growth and production of terrestrial (land) plants. Although water is essential for a number of metabolic, physiological, and growth processes in plants (e.g., turgor maintenance and cell elongation, transport of nutrients and carbohydrates, energy dissipation, and photosynthetic electron transport), most plants consume and store very little water. The vast majority of water that is absorbed by a plant’s root system moves through its vascular tissue (xylem) and is lost to the atmosphere as water vapor in the process of transpiration. It is the net difference between this uptake and loss that determines the overall water balance of a plant. Plant species vary considerably in their abilities to capture soil water, how efficiently they utilize water, and their tolerances to desiccation, and this variation has a number of ecological consequences at scales from individual plants to ecosystems, landscapes, and the globe. Historically, plant physiological ecologists studied the water relations of plant cells, tissues, and organs to better understand the molecular, physiological, anatomical, and morphological mechanisms by which plants have adapted to survive drought and cope with limited water availability. For obvious reasons, these studies were concentrated on plants in extreme moisture-limited ecosystems such as deserts, but water relations research was also conducted in other systems that experience intermittent and seasonal drought. Over time, physiological ecologists began to study the water relationships between plants and soil, examined how plants interacted with one another for this resource, and explored how temporal and spatial variation in soil moisture availability influences species distributions and community organization. The study of ecohydrology is a relatively recent interdisciplinary discipline that seeks to study how hydrological processes influence biological communities and also how these systems, in turn, influence the water cycle. Plant physiological ecologists play an important role in ecohydrology research by studying how water influences ecosystem function and quantifying the role of vegetation in influencing hydrological processes. Finally, plant physiological ecologists are increasingly interested in how changes in water availability driven by climate change affects plants and terrestrial ecosystems, how global change factors (e.g., atmospheric CO2) influence plant water relations, and what role vegetation itself plays in influencing the atmosphere and climate. Below are selected sources that highlight the full breadth of the study of the physiological ecology of water balance in plants. An emphasis is placed on terrestrial plants in non-hydric (i.e., non-flooded) environments and sources include a number of classical as well as contemporary publications.


Sign in / Sign up

Export Citation Format

Share Document