scholarly journals The effect of gas cooking on bronchial hyperresponsiveness and the role of immunoglobulin E

1999 ◽  
Vol 14 (4) ◽  
pp. 839 ◽  
Author(s):  
M. Kerkhof ◽  
J.G.R. de Monchy ◽  
B Rijken ◽  
J.p Schouten
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 256
Author(s):  
Andrea O’Malley ◽  
Swanandi Pote ◽  
Ivana Giangrieco ◽  
Lisa Tuppo ◽  
Anna Gawlicka-Chruszcz ◽  
...  

(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins’ sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.


2002 ◽  
Vol 92 (4) ◽  
pp. 1594-1602 ◽  
Author(s):  
Michele Sweeney ◽  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Shen Zhang ◽  
Ying Yu ◽  
...  

Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents ( I SOC) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+channels by Ni2+ decreased I SOC and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I SOC, enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.


1992 ◽  
Vol 13 (11) ◽  
pp. 403-412
Author(s):  
Gail G. Shapiro

Definition and Pathophysiology Asthma is a reversible airways disease characterized by both smooth muscle hyperreactivity and airway inflammation. During the 1970s and early 1980s the focus was on smooth muscle constriction, and it was believed that better bronchodilators would greatly diminish our difficulties in controlling this condition. This, unfortunately, was not the case. The emphasis of therapy today has turned to airway inflammation. Lung biopsies from patients who have asthma show destruction of respiratory epithelium, basement membrane thickening, and inflammatory cellular infiltrate. Among the infiltrating cells are eosinophils, macrophages, and neutrophils that are called to the site of inflammation by the chemotactic products released by activated mast cells. Upon their arrival, these cells release their own products of inflammation, which amplify this immunologic response. A variety of neuropeptides also play a role, some serving to stabilize and others to destabilize the airway. One result of this airway inflammation is airways reactivity, also known as bronchial hyperresponsiveness. A common example of this scenario is the child who has allergic asthma and encounters a problematic allergen. This child has immunoglobulin E (IgE) to this allergen bound to mast cells in his or her airway. Upon exposure to the allergen, the binding of IgE and antigen triggers mast cell mediator release within minutes.


2007 ◽  
Vol 204 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Zoulfia Allakhverdi ◽  
Michael R. Comeau ◽  
Heidi K. Jessup ◽  
Bo-Rin Park Yoon ◽  
Avery Brewer ◽  
...  

Compelling evidence suggests that the epithelial cell–derived cytokine thymic stromal lymphopoietin (TSLP) may initiate asthma or atopic dermatitis through a dendritic cell–mediated T helper (Th)2 response. Here, we describe how TSLP might initiate and aggravate allergic inflammation in the absence of T lymphocytes and immunoglobulin E antibodies via the innate immune system. We show that TSLP, synergistically with interleukin 1 and tumor necrosis factor, stimulates the production of high levels of Th2 cytokines by human mast cells (MCs). We next report that TSLP is released by primary epithelial cells in response to certain microbial products, physical injury, or inflammatory cytokines. Direct epithelial cell–mediated, TSLP-dependent activation of MCs may play a central role in “intrinsic” forms of atopic diseases and explain the aggravating role of infection and scratching in these diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Anouk K. Gloudemans ◽  
Bart N. Lambrecht ◽  
Hermelijn H. Smits

Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal) dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies.


2016 ◽  
Vol 13 (3) ◽  
pp. 454-462
Author(s):  
Baghdad Science Journal

Vitiligo is an acquired idiopathic skin disorder characterized by depigmented macules due to loss of cutaneous melanocytes. A potential role of the immune dysfunction has been suggested in vitiligo, so to test this hypothesis, certain cytokines (IL-17A and TNF-?) and immunoglobulins (IgM, IgG, IgA and total IgE) were investigated in all participants. The study included: 60 patients with age range between (6-55) year; 30(11 males and 19 females) were untreated and 30(12 males and 18 females) were treated with Narrow Band Ultraviolet-B (NB-UVB) and 30 (14 males and 16 females) apparently healthy control. Serum was separated and cytokines (IL-17A and TNF-?) and total immunoglobulin E (IgE) were detected by using Enzyme Linked Immunosorbent Assay (ELISA); while immunoglobulins (IgM, IgG and IgA) were detected by using Single Radial Immunodiffusion (SRID) method. The results showed that the mean levels of serum IL-17A and TNF-? in both untreated and NB-UVB treated vitiligo patients were increased significantly (p ? 0.05) as compared with healthy control. The mean levels of serum IgG and IgA in untreated vitiligo patients showed non significant decreased (P


1993 ◽  
Vol 31 (11) ◽  
pp. 2952-2959 ◽  
Author(s):  
S Y Wong ◽  
M P Hajdu ◽  
R Ramirez ◽  
P Thulliez ◽  
R McLeod ◽  
...  

2010 ◽  
Vol 153 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Allan Linneberg ◽  
Runa Vavia Fenger ◽  
Lise-Lotte N. Husemoen ◽  
Carmen Vidal ◽  
Luis Vizcaino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document