Reality versus perception: Current knowledge and understanding of percent body fat and BMI among college students

2013 ◽  
Author(s):  
Lynn Romejko-Jacobs ◽  
Kristen P. McAlexander ◽  
Kelyn Y. Rola
1997 ◽  
Vol 85 (3) ◽  
pp. 1075-1078 ◽  
Author(s):  
D. Craig Huddy ◽  
Robert L. Johnson ◽  
Michael H. Stone ◽  
Christopher M. Proulx ◽  
Katherine A. Pierce

Students (39 men and 27 women) from a southern university, who were enrolled in a 14-wk. introductory weight-training course, were administered a 20-item body-image questionnaire and subsequently underwent skinfold measurements to assess percent body fat. Mean scores were correlated with percent body fat. For men, women, and both sexes combined correlations were significant and inverse ( rs = −.68, −.41, −.66, respectively). Body image as measured was inversely related to percent body fat among these college students. Researchers should examine how dietary and exercise-induced changes in adiposity (pre-post design) influence scores on body image.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S275
Author(s):  
Jason R. Beam ◽  
David J. Szymanski ◽  
Emily G. Cunningham

2012 ◽  
Vol 37 (6) ◽  
pp. 1118-1123 ◽  
Author(s):  
Sareen S. Gropper ◽  
Karla P. Simmons ◽  
Lenda Jo Connell ◽  
Pamela V. Ulrich

The objectives of this study were to examine changes in body weight, body mass index (BMI), body composition, and shape in a group of male and female students over the 4-year college period. Anthropometric assessments including height and weight (via standard techniques), body composition (via bioelectrical impedance analysis), and body shape (via 3-dimensional body scanning) were conducted at the beginning of the freshman year and end of the senior year in 131 college students. Four-year changes included significant (p < 0.0001) gains in weight (3.0 kg), BMI (1.0 kg·m–2), body fat (3.6%), and absolute fat mass (3.2 kg). Males gained significantly (p < 0.0001) greater amounts of weight, BMI, percent and absolute fat mass, and fat-free mass than females. Weight change ranged from –8.7 to +16.8 kg. About 70% of the participants gained weight, which averaged 5.3 kg; significant (p < 0.0001) gains in BMI, fat-free mass, absolute fat mass, and percent body fat and significant (p < 0.0005) increases in neck, chest–bust, waist, hips, seat, and biceps circumferences were also observed in this weight gain group. The percentage of participants classified as overweight–obese increased from 18% to 31%. The number of females and males with ≥30% and 20% body fat, respectively, increased from n = 14 to n = 26 (with n = 4 exhibiting normal weight obesity) over the 4-year period. The waist circumference changes were significantly (p < 0.0001) correlated with both weight and percent body fat changes. In conclusion, the increasing prevalence of obesity and normal weight obesity among this college population suggests the need for additional health promotion strategies on college campuses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katsuhiko Ohori ◽  
Toshiyuki Yano ◽  
Satoshi Katano ◽  
Hidemichi Kouzu ◽  
Suguru Honma ◽  
...  

Abstract Background Although high body mass index (BMI) is a risk factor of heart failure (HF), HF patients with a higher BMI had a lower mortality rate than that in HF patients with normal or lower BMI, a phenomenon that has been termed the “obesity paradox”. However, the relationship between body composition, i.e., fat or muscle mass, and clinical outcome in HF remains unclear. Methods We retrospectively analyzed data for 198 consecutive HF patients (76 years of age; males, 49%). Patients who were admitted to our institute for diagnosis and management of HF and received a dual-energy X-ray absorptiometry scan were included regardless of left ventricular ejection fraction (LVEF) categories. Muscle wasting was defined as appendicular skeletal muscle mass index < 7.0 kg/m2 in males and < 5.4 kg/m2 in females. Increased percent body fat mass (increased FM) was defined as percent body fat > 25% in males and > 30% in females. Results The median age of the patients was 76 years (interquartile range [IQR], 67–82 years) and 49% of them were male. The median LVEF was 47% (IQR, 33–63%) and 33% of the patients had heart failure with reduced ejection fraction. Increased FM and muscle wasting were observed in 58 and 67% of the enrolled patients, respectively. During a 180-day follow-up period, 32 patients (16%) had cardiac events defined as cardiac death or readmission by worsening HF or arrhythmia. Kaplan-Meier survival curves showed that patients with increased FM had a lower cardiac event rate than did patients without increased FM (11.4% vs. 22.6%, p = 0.03). Kaplan-Meier curves of cardiac event rates did not differ between patients with and those without muscle wasting (16.5% vs. 15.4%, p = 0.93). In multivariate Cox regression analyses, increased FM was independently associated with lower cardiac event rates (hazard ratio: 0.45, 95% confidence interval: 0.22–0.93) after adjustment for age, sex, diabetes, muscle wasting, and renal function. Conclusions High percent body fat mass is associated with lower risk of short-term cardiac events in HF patients.


1980 ◽  
Vol 50 (2) ◽  
pp. 547-552
Author(s):  
Michael Young ◽  
T. Gilmour Reeve

The purpose of the study was to determine whether individuals with high percent body fat can be distinguished on the basis of personality and body-image from those possessing lower levels of body fat. 65 female college students were administered the 16 Personality Factor Questionnaire and the Secord and Jourard Body-cathexis Scale. Measurements of height, weight, and skin folds at the triceps and illiac crest were also taken. On the basis of percent body fat two groups of 20 females each (high and low percent body fat) were identified. From discriminant analyses one personality factor and six body-image items were identified which distinguished between groups. Reclassification of the subjects, based upon derived discriminant functions, resulted in 60.0% of the subjects being correctly reclassified from personality data and 100% of the subjects correctly reclassified from body-image data. Body-image appears to be an important factor that can distinguish between individuals possessing high and low levels of body fat.


Author(s):  
Kara C. Anderson ◽  
Katie R. Hirsch ◽  
Austin M. Peterjohn ◽  
Malia N.M. Blue ◽  
Alexis A. Pihoker ◽  
...  

AbstractNormal weight obesity (NWO) describes individuals who have a normal weight body mass index (BMI), but have an unhealthy amount of body fat. Based on the life-long habits that develop during college, exploring NWO among a college-aged population may be essential in identifying and preventing obesity that develops in early adulthood. This study aimed to characterize NWO among young adults with normal weight BMI. 94 college students (Mean ± SD: Age: 19.6 ± 1.5 yrs; BMI: 21.9 ± 1.8 kg/m2) enrolled during the Fall semester (Aug-Oct) were assessed for body composition by dual energy X-ray absorptiometry to determine body fat percentage, fat mass, lean mass and trunk fat; lifestyle habits were characterized from validated questionnaires. Mean arterial pressure and metabolic biomarkers [total cholesterol, high density lipoproteins, non-high density lipoproteins, and glucose] were evaluated for cardiometabolic health. NWO was defined using data from the National Health and Nutrition Examination Survey (NHANES) for body fat percentage. Data was analyzed by group (NWO vs NWL) and sex. with independent t-tests to investigate continuous data, and chi-square test of independence for categorical data. Rates of NWO for the total sample were 13.8%. Males (n=30) had a higher rate of NWO (26.7%) compared to females (n=64; 7.8%). NWO individuals had higher fat mass (p=0.024), trunk fat (p<0.001), and larger waist to hip ratio (p<0.001) than normal weight lean. NWO also engaged in less vigorous physical activity (p=0.043). The occurrence of NWO among otherwise healthy college students is evident. Identification of these individuals may be an effective component for obesity prevention and treatment. Determining feasible methods to measure body fat in this population is essential, as BMI may mask obesity in a young adult population.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Elizabeth A. Thomas ◽  
Adnin Zaman ◽  
Marc-Andre Cornier ◽  
Victoria A. Catenacci ◽  
Emma J. Tussey ◽  
...  

Accumulating evidence suggests that later timing of energy intake (EI) is associated with increased risk of obesity. In this study, 83 individuals with overweight and obesity underwent assessment of a 7-day period of data collection, including measures of body weight and body composition (DXA) and 24-h measures of EI (photographic food records), sleep (actigraphy), and physical activity (PA, activity monitors) for 7 days. Relationships between body mass index (BMI) and percent body fat (DXA) with meal timing, sleep, and PA were examined. For every 1 h later start of eating, there was a 1.25 (95% CI: 0.60, 1.91) unit increase in percent body fat (False Discovery Rate (FDR) adjusted p value = 0.010). For every 1 h later midpoint of the eating window, there was a 1.35 (95% CI: 0.51, 2.19) unit increase in percent body fat (FDR p value = 0.029). For every 1 h increase in the end of the sleep period, there was a 1.64 (95% CI: 0.56, 2.72) unit increase in percent body fat (FDR p value = 0.044). Later meal and sleep timing were also associated with lower PA levels. In summary, later timing of EI and sleep are associated with higher body fat and lower levels of PA in people with overweight and obesity.


2016 ◽  
Vol 41 (2) ◽  
pp. 186-193 ◽  
Author(s):  
Alexandra P Frost ◽  
Tracy Norman Giest ◽  
Allison A Ruta ◽  
Teresa K Snow ◽  
Mindy Millard-Stafford

Background: Body composition is important for health screening, but appropriate methods for unilateral lower extremity amputees have not been validated. Objectives: To compare body mass index adjusted using Amputee Coalition equations (body mass index–Amputee Coalition) to dual-energy X-ray absorptiometry in unilateral lower limb amputees. Study design: Cross-sectional, experimental. Methods: Thirty-eight men and women with lower limb amputations (transfemoral, transtibial, hip disarticulation, Symes) participated. Body mass index (mass/height2) was compared to body mass index corrected for limb loss (body mass index–Amputee Coalition). Accuracy of classification and extrapolation of percent body fat with body mass index was compared to dual-energy X-ray absorptiometry. Results: Body mass index–Amputee Coalition increased body mass index (by ~ 1.1 kg/m2) but underestimated and mis-classified 60% of obese and overestimated 100% of lean individuals according to dual-energy X-ray absorptiometry. Estimated mean percent body fat (95% confidence interval) from body mass index–Amputee Coalition (28.3% (24.9%, 31.7%)) was similar to dual-energy X-ray absorptiometry percent body fat (29.5% (25.2%, 33.7%)) but both were significantly higher ( p < 0.05) than percent body fat estimated from uncorrected body mass index (23.6% (20.4%, 26.8%)). However, total errors for body mass index and body mass index–Amputee Coalition converted to percent body fat were unacceptably large (standard error of the estimate = 6.8%, 6.2% body fat) and the discrepancy between both methods and dual-energy X-ray absorptiometry was inversely related ( r = −0.59 and r = −0.66, p < 0.05) to the individual’s level of body fatness. Conclusions: Body mass index (despite correction) underestimates health risk for obese patients and overestimates lean, muscular individuals with lower limb amputation. Clinical relevance Clinical recommendations for an ideal body mass based on body mass index–Amputee Coalition should not be relied upon in lower extremity amputees. This is of particular concern for obese lower extremity amputees whose health risk might be significantly underestimated based on body mass index despite a “correction” formula for limb loss.


Sign in / Sign up

Export Citation Format

Share Document