scholarly journals Matrine inhibits the adhesion and migration of BCG823 gastric cancer cells by affecting the structure and function of the vasodilator-stimulated phosphoprotein (VASP)

2013 ◽  
Vol 34 (8) ◽  
pp. 1084-1092 ◽  
Author(s):  
Jing-wei Zhang ◽  
Ke Su ◽  
Wen-tao Shi ◽  
Ying Wang ◽  
Peng-chao Hu ◽  
...  
2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 410-410 ◽  
Author(s):  
Yu Jin Kim ◽  
Won Shik Kim ◽  
Sang Woo Kim ◽  
Woon Yong Jung

410 Background: In our previous study, we identified three miRNAs (hsa-miR-421, hsa-miR-29b-1-5p, and hsa-miR-27b-5p) with two mRNAs (FBXO11 and CREBZF) that might play an important role in the development of gastric adenocarcinoma (GAC) from premalignant adenomas. However, the expression and function of these miRNAs have not been not well characterized. Methods: We investigated the roles of CREBZF and miRNAs as potential biomarkers for the progression of gastric cancer (GC) in low-/high-grade dysplasia and early gastric cancer patients using immunohistochemical staining and miRNA in situ hybridization. Considering that targets can modulate in GC, we analyzed the CREBZF expression in gastric cancer cell lines by RT-PCR and western blot analysis. Results: We observed lower expression of CREBZF with increasing miRNAs in the MKN-74 gastric cancer cells compared to that in SNU-NCC-19. Next, the role of CREBZF in MKN-74 gastric cancer cells was investigated via cell viability and migration assays by miRNA/anti-miRNA modulation. Furthermore, we found that hsa-miR-421/hsa-miR-29b-1-5p target CREBZF and might play an important role in the migration of MKN-74 cells. Conclusions: This study suggests that increased CREBZF by hsa-miR-421/hsa-miR-29b-1-5p inhibition may be important to prevent the progression of gastric cancer in its early stage.


Author(s):  
Qiong Luo ◽  
Suyun Zhang ◽  
Donghuan Zhang ◽  
Rui Feng ◽  
Nan Li ◽  
...  

Background: Gastric cancer(GC) is currently one of the major malignancies that threatens human lives and health. Anlotinib is a novel small-molecule that inhibits angiogenesis to exert anti-tumor effects. However, the function in gastric cancer is incompletely understood. Objective: The aim of the present study was to investigate the anti-tumor effects and molecular mechanisms of anlotinib combined with dihydroartemisinin (DHA) in SGC7901 gastric cancer cells. Method: Different concentrations of anlotinib and DHA were used to treat SGC7901 gastric cancer cells, after which cell proliferation was measured. Drug interactions of anlotinib and DHA were analyzed by the Chou-Talalay method with CompuSyn software. proliferation, apoptosis, invasion, migration, and angiogenesis were measured using the cell counting kit-8 (CCK8) assay, flow cytometry, Transwell invasion assays, scratch assays, and chicken chorioallantoic membrane (CAM) assays. proliferation-associated protein (Ki67), apoptosis-related protein (Bcl-2), and vascular endothelial growth factor A (VEGF-A) were quantified by Western bloting. Results: The combination of 2.5 μmol/L of anlotinib and 5 of μmol/L DHA was highly synergistic in inhibiting cell growth, significantly increased the apoptosis rate and suppressed obviously the invasion and migration capability and angiogenesis of gastric cancer cells. In addition, the expression levels of Ki67, Bcl-2, and VEGF-A, as well as angiogenesis, were significantly decreased in the Combination of drugs compared with in control and either drug alone. Conclusion: The combination of anlotinib and DHA showed synergistic antitumor activity, suggesting their potential in treating patients with gastric cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shengquan Tan ◽  
Jiapeng Mo ◽  
Zixiong Zhang ◽  
Chuying Huang ◽  
Yi Zou ◽  
...  

Selenium has remained a controversial character in cancer research. While its antitumor effects have been widely demonstrated, further evidence is required to establish it as a robust treatment regime. Sodium selenite (SS), an inorganic selenium, reportedly affected the proliferation and redifferentiation of gastric cancer cells, but whether it could act as a complement to conventional chemotherapeutic drugs for combination therapy is uncertain. Herein, SGC-7901 and MGC-803 gastric cancer cells were treated with PADM (Ac-Phe-Lys-PABC-ADM), a prodrug of doxorubicin/adriamycin (ADM), and the combined antitumor effects of the two drugs were evaluated. Characterization after treatment revealed that although PADM exhibited antitumor effects individually by inhibiting the proliferation and migration of gastric cancer cells and inducing apoptosis, the addition of SS significantly amplified these effects. Furthermore, gastric cancer cell apoptosis triggered by the combined treatment of SS and PADM may involve the participation of mitochondrial apoptosis, as evidenced by the changes in mitochondrial morphology and occurrence of mitochondrial fission. Collectively, SS could be a strong complementary drug that accentuates the therapeutic potential of PADM in gastric cancer treatment and management, and its significance could contribute to unique and innovative anticancer strategies.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Ruiying Tong ◽  
Xian Wu ◽  
Ying Liu ◽  
Yang Liu ◽  
Jigang Zhou ◽  
...  

Curcumin, a natural polyphenol antioxidant extracted from the root of turmeric (Curcuma longa), can induce apoptosis and DNA demethylation in several types of cancer cells. However, the mechanism of its anticancer potentials and DNA demethylation effects and the potential relationships between these outcomes have not been clearly elucidated. In the present study, the effects of curcumin on the proliferation, colony formation, and migration of human gastric cancer cells (hGCCs) were explored. Reactive oxygen species (ROS) levels, mitochondrial damage, DNA damage, and apoptosis of curcumin-treated hGCCs were analyzed. Changes in the expression of several genes related to DNA damage repair, the p53 pathway, cell cycle, and DNA methylation following curcumin treatment were also evaluated. We observed that curcumin inhibited the proliferation, colony formation, and migration of hGCCs in a dose- and time-dependent fashion. A high concentration of curcumin elevated ROS levels and triggered mitochondrial damage, DNA damage, and apoptosis of hGCCs. Further, curcumin-induced DNA demethylation of hGCCs was mediated by the damaged DNA repair-p53-p21/GADD45A-cyclin/CDK-Rb/E2F-DNMT1 axis. We propose that the anticancer effect of curcumin could largely be attributed to its prooxidative effect at high concentrations and ROS elevation in cancer cells. Moreover, we present a novel mechanism by which curcumin induces DNA demethylation of hGCCs, suggesting the need to further investigate the demethylation mechanisms of other DNA hypomethylating drugs.


2020 ◽  
Vol Volume 13 ◽  
pp. 7985-7995
Author(s):  
Yuan Guo ◽  
Guochun Lu ◽  
Huahui Mao ◽  
Shengkun Zhou ◽  
Xiangmei Tong ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3667
Author(s):  
Yaelim Lee ◽  
Megan Finch-Edmondson ◽  
Hamizah Cognart ◽  
Bowen Zhu ◽  
Haiwei Song ◽  
...  

YAP and its paralog TAZ are the nuclear effectors of the Hippo tumour-suppressor pathway, and function as transcriptional co-activators to control gene expression in response to mechanical cues. To identify both common and unique transcriptional targets of YAP and TAZ in gastric cancer cells, we carried out RNA-sequencing analysis of overexpressed YAP or TAZ in the corresponding paralogous gene-knockouts (KOs), TAZ KO or YAP KO, respectively. Gene Ontology (GO) analysis of the YAP/TAZ-transcriptional targets revealed activation of genes involved in platelet biology and lipoprotein particle formation as targets that are common for both YAP and TAZ. However, the GO terms for cell-substrate junction were a unique function of YAP. Further, we found that YAP was indispensable for the gastric cancer cells to re-establish cell-substrate junctions on a rigid surface following prolonged culture on a soft substrate. Collectively, our study not only identifies common and unique transcriptional signatures of YAP and TAZ in gastric cancer cells but also reveals a dominant role for YAP over TAZ in the control of cell-substrate adhesion.


Sign in / Sign up

Export Citation Format

Share Document