scholarly journals A novel selective small-molecule PI3K inhibitor is effective against human multiple myeloma in vitro and in vivo

2013 ◽  
Vol 3 (9) ◽  
pp. e141-e141 ◽  
Author(s):  
J Glauer ◽  
N Pletz ◽  
M Schön ◽  
P Schneider ◽  
N Liu ◽  
...  
2016 ◽  
Vol 17 (11) ◽  
pp. 1927 ◽  
Author(s):  
Bingqian Xie ◽  
Zhijian Xu ◽  
Liangning Hu ◽  
Gege Chen ◽  
Rong Wei ◽  
...  

2010 ◽  
Author(s):  
Wan-Ru Chao ◽  
Yihui Shi ◽  
Dominic Dinh ◽  
Carol Hou ◽  
Lidia Sambucetti

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 250-250 ◽  
Author(s):  
Teru Hideshima ◽  
Laurence Catley ◽  
Hiroshi Yasui ◽  
Kenji Ishitsuka ◽  
Noopur Raje ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1311-1314 ◽  
Author(s):  
Ioanna Papandreou ◽  
Nicholas C. Denko ◽  
Michael Olson ◽  
Heleen Van Melckebeke ◽  
Sofie Lust ◽  
...  

Abstract Activation of the adaptive Ire1-XBP1 pathway has been identified in many solid tumors and hematologic malignancies, including multiple myeloma (MM). Here, we report the identification of STF-083010, a novel small-molecule inhibitor of Ire1. STF-083010 inhibited Ire1 endonuclease activity, without affecting its kinase activity, after endoplasmic reticulum stress both in vitro and in vivo. Treatment with STF-083010 showed significant antimyeloma activity in model human MM xenografts. Similarly, STF-083010 was preferentially toxic to freshly isolated human CD138+ MM cells compared with other similarly isolated cell populations. The identification of this novel Ire1 inhibitor supports the hypothesis that the Ire1-XBP1 axis is a promising target for anticancer therapy, especially in the context of MM.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 4053-4062 ◽  
Author(s):  
Teru Hideshima ◽  
Laurence Catley ◽  
Hiroshi Yasui ◽  
Kenji Ishitsuka ◽  
Noopur Raje ◽  
...  

Perifosine is a synthetic novel alkylphospholipid, a new class of antitumor agents which targets cell membranes and inhibits Akt activation. Here we show that baseline phosphorylation of Akt in multiple myeloma (MM) cells is completely inhibited by perifosine [octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate] in a time- and dose-dependent fashion, without inhibiting phosphoinositide-dependent protein kinase 1 phosphorylation. Perifosine induces significant cytotoxicity in both MM cell lines and patient MM cells resistant to conventional therapeutic agents. Perifosine does not induce cytotoxicity in peripheral blood mononuclear cells. Neither exogenous interleukin-6 (IL-6) nor insulinlike growth factor 1 (IGF-1) overcomes Perifosine-induced cytotoxicity. Importantly, Perifosine induces apoptosis even of MM cells adherent to bone marrow stromal cells. Perifosine triggers c-Jun N-terminal kinase (JNK) activation, followed by caspase-8/9 and poly (ADP)-ribose polymerase cleavage. Inhibition of JNK abrogates perifosine-induced cytotoxicity, suggesting that JNK plays an essential role in perifosine-induced apoptosis. Interestingly, phosphorylation of extracellular signal–related kinase (ERK) is increased by perifosine; conversely, MEK inhibitor synergistically enhances Perifosine-induced cytotoxicity in MM cells. Furthermore, perifosine augments dexamethasone, doxorubicin, melphalan, and bortezomib-induced MM cell cytotoxicity. Finally, perifosine demonstrates significant antitumor activity in a human plasmacytoma mouse model, associated with down-regulation of Akt phosphorylation in tumor cells. Taken together, our data provide the rationale for clinical trials of perifosine to improve patient outcome in MM.


Blood ◽  
2011 ◽  
Vol 117 (6) ◽  
pp. 1947-1957 ◽  
Author(s):  
Yun Dai ◽  
Shuang Chen ◽  
Rena Shah ◽  
Xin-Yan Pei ◽  
Li Wang ◽  
...  

Abstract Ras/MEK/ERK pathway activation represents an important compensatory response of human multiple myeloma (MM) cells to checkpoint kinase 1 (Chk1) inhibitors. To investigate the functional roles of Src in this event and potential therapeutic significance, interactions between Src and Chk1 inhibitors (eg, UCN-01 or Chk1i) were examined in vitro and in vivo. The dual Src/Abl inhibitors BMS354825 and SKI-606 blocked Chk1-inhibitor–induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, markedly increasing apoptosis in association with BimEL up-regulation, p34cdc2 activation, and DNA damage in MM cell lines and primary CD138+ MM samples. Loss-of-function Src mutants (K297R, K296R/Y528F) or shRNA knock-down of Src prevented the ERK1/2 activation induced by Chk1 inhibitors and increased apoptosis. Conversely, constitutively active Ras or mitogen-activated protein kinase/ERK kinase 1 (MEK1) significantly diminished the ability of Src inhibitors to potentiate Chk1-inhibitor lethality. Moreover, Src/Chk1-inhibitor cotreatment attenuated MM-cell production of vascular endothelial growth factor and other angiogenic factors (eg, ANG [angiogenin], TIMP1/2 [tissue inhibitor of metalloproteinases 1/2], and RANTES [regulated on activation normal T-cell expressed and secreted]), and inhibited in vitro angiogenesis. Finally, coadministration of BMS354825 and UCN-01 suppressed human MM tumor growth in a murine xenograft model, increased apoptosis, and diminished angiogenesis. These findings suggest that Src kinase is required for Chk1-inhibitor–mediated Ras → ERK1/2 signaling activation, and that disruption of this event sharply potentiates the anti-MM activity of Chk1 inhi-bitors in vitro and in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4888-4888
Author(s):  
Li Long ◽  
Xia Tong ◽  
Montesa Patawaran ◽  
Lea Aukerman ◽  
Bahija Jallal ◽  
...  

Abstract CD40 is expressed on most B cell malignancies including multiple myeloma and represents an attractive target for antibody therapy. We have generated a novel, highly potent, fully human antagonistic anti-CD40 monoclonal antibody, CHIR-12.12, using XenoMouse® mice (Abgenix, Inc). The antibody can mediate anti-tumor activity potentially by at least two mechanisms: CHIR-12.12 can block CD40-ligand mediated survival signals and it can lyse tumor cells by antibody-dependent cellular cytotoxicity (ADCC). We have previously reported that CHIR-12.12 mediates stronger killing of CD40- and CD20-expressing lymphoma cells than rituximab by ADCC in vitro and significantly inhibits the growth of both rituximab-responsive and rituximab-resistant human lymphoma xenografts in vivo. In this study, we examined in vitro and in vivo efficacy of CHIR-12.12 against human multiple myeloma. The human MM cell line IM-9, which expresses both CD40 and CD20, the target antigen for CHIR-12.12 and rituximab respectively was used for the study. CHIR-12.12 induced lysis of target tumor cells by ADCC in a dose dependent manner reaching maximum cell lysis at 0.1ug/ml concentration. The maximum specific lysis of IM-9 cells by CHIR-12.12 was greater than the lysis induced by rituximab (64% vs 45 %, n=3, p<0.01). In addition, the EC50 of CHIR-12.12 was on average 5.9 picomolar, which was 10-fold lower than the EC50 of rituximab. Greater ADCC by CHIR-12.12 was not due to higher density of CD40 molecules on the target tumor cells compared to CD20 molecules. IM-9 cells expressed 35590 ±8858 CD40 molecules compared to 93783 ± 2247 CD20 molecules. The in vivo CHIR-12.12 efficacy was then evaluated in IM-9 xenograft model. In an un-staged conditional survival model, where treatment began one day after intravenous inoculation of IM-9 tumor cells, CHIR-12.12 significantly prolonged the survival of tumor-bearing mice in a dose-dependent manner with 60% survival in the 0.1 mg/kg CHIR-12.12 treated group and 80% survival in the 1 and 10 mg/kg groups respectively on day 56 (Log Rank Test: P<0.01 and P<0.001, respectively). All animals in the control IgG1 and bortezomib treated groups were terminated between day 18 and day 26 due to severe disease related to tumor development (i.e., hind limb paralysis and significant body weight loss). In a staged subcutaneous model, where treatment began once the tumor volume was 150–200mm3, CHIR-12.12 administered weekly at 0.1, 1 and 10 mg/kg significantly inhibited tumor growth with a tumor volume reduction of 17% (P>0.05), 34% (P<0.01) and 44% (P<0.001) respectively. Bortezomib, when tested at 0.5 mg/kg twice a week did not inhibit tumor growth. At the maximally tolerated dose (MTD) of 1 mg/kg twice a week, bortezomib inhibited tumor growth by 30% (P<0.01). Taken together, these data demonstrate that the anti-CD40 mAb CHIR-12.12 has potent activity against human multiple myeloma in vitro and xenograft models in vivo.


Sign in / Sign up

Export Citation Format

Share Document