scholarly journals Reactive Oxygen Species Initiate a Metabolic Collapse in Hippocampal Slices: Potential Trigger of Cortical Spreading Depression

2014 ◽  
Vol 34 (9) ◽  
pp. 1540-1549 ◽  
Author(s):  
Anton Malkov ◽  
Anton I lvanov ◽  
Irina Popova ◽  
Marat Mukhtarov ◽  
Olena Gubkina ◽  
...  

Excessive accumulation of reactive oxygen species (ROS) underlies oxidative damage. We find that in hippocampal slices, decreased activity of glucose-based antioxidant system induces a massive, abrupt, and detrimental change in cellular functions. We call this phenomenon metabolic collapse (MC). This collapse manifested in long-lasting silencing of synaptic transmission, abnormal oxidation of NAD(P)H and FADH2 associated with immense oxygen consumption, and massive neuronal depolarization. MC occurred without any preceding deficiency in neuronal energy supply or disturbances of ionic homeostasis and spread throughout the hippocampus. It was associated with a preceding accumulation of ROS and was largely prevented by application of an efficient antioxidant Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). The consequences of MC resemble cortical spreading depression (CSD), a wave of neuronal depolarization that occurs in migraine, brain trauma, and stroke, the cellular initiation mechanisms of which are poorly understood. We suggest that ROS accumulation might also be the primary trigger of CSD. Indeed, we found that Tempol strongly reduced occurrence of CSD in vivo, suggesting that ROS accumulation may be a key mechanism of CSD initiation.

Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4030-4038 ◽  
Author(s):  
Marisa M. Juntilla ◽  
Vineet D. Patil ◽  
Marco Calamito ◽  
Rohan P. Joshi ◽  
Morris J. Birnbaum ◽  
...  

Although AKT is essential for multiple cellular functions, the role of this kinase family in hematopoietic stem cells (HSCs) is unknown. Thus, we analyzed HSC function in mice deficient in the 2 isoforms most highly expressed in the hematopoietic compartment, AKT1 and AKT2. Although loss of either isoform had only a minimal effect on HSC function, AKT1/2 double-deficient HSCs competed poorly against wild-type cells in the development of myeloid and lymphoid cells in in vivo reconstitution assays. Serial transplantations revealed an essential role for AKT1 and AKT2 in the maintenance of long-term HSCs (LT-HSCs). AKT1/2 double-deficient LT-HSCs were found to persist in the G0 phase of the cell cycle, suggesting that the long-term functional defects are caused by increased quiescence. Furthermore, we found that the intracellular content of reactive oxygen species (ROS) is dependent on AKT because double-deficient HSCs demonstrate decreased ROS. The importance of maintaining ROS for HSC differentiation was shown by a rescue of the differentiation defect after pharmacologically increasing ROS levels in double-deficient HSCs. These data implicate AKT1 and AKT2 as critical regulators of LT-HSC function and suggest that defective ROS homeostasis may contribute to failed hematopoiesis.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 87 ◽  
Author(s):  
Wei Sun ◽  
Bing Wang ◽  
Xing-Long Qu ◽  
Bi-Qiang Zheng ◽  
Wen-Ding Huang ◽  
...  

Background: The present study was designed to explore the underlying role of hypoxia-inducible factor 1α (HIF-1α) in reactive oxygen species (ROS) formation and apoptosis in osteosarcoma (OS) cells induced by hypoxia. Methods: In OS cells, ROS accumulated and apoptosis increased within 24 h after exposure to low HIF-1α expression levels. A co-expression analysis showed that HIF was positively correlated with Forkhead box class O1 (FoxO1) expression and negatively correlated with CYP-related genes from the National Center for Biotechnology Information’s Gene Expression Omnibus (NCBI GEO) datasets. Hypoxia also considerably increased HIF-1α and FoxO1 expression. Moreover, the promoter region of FoxO1 was directly regulated by HIF-1α. We inhibited HIF-1α via siRNA and found that the ROS accumulation and apoptosis induced by hypoxia in OS cells decreased. In this study, a murine xenograft model of BALB-c nude mice was adopted to test tumour growth and measure the efficacy of 2-ME + As2O3 treatment. Results: Ad interim knockdown of HIF-1α also inhibited manganese-dependent superoxide dismutase (MnSOD), catalase and sestrin 3 (Sesn3) expression in OS cells. Furthermore, hypoxia-induced ROS formation and apoptosis in OS cells were associated with CYP450 protein interference and were ablated by HIF-1α silencing via siRNA. Conclusions: Our data reveal that HIF-1α inhibits ROS accumulation by directly regulating FoxO1 in OS cells, which induces MnSOD, catalase and Sesn3 interference, thus resulting in anti-oxidation effects. The combination of an HIF-1α inhibitor (2-mercaptoethanol,2-ME) and ROS inducer (arsenous oxide, As2O3) can prohibit proliferation and migration and promote apoptosis in MG63 cells in vitro while inhibiting tumour growth in vivo.


2011 ◽  
Vol 1368 ◽  
pp. 11-18 ◽  
Author(s):  
Alessandro Viggiano ◽  
Emanuela Viggiano ◽  
Ilaria Valentino ◽  
Marcellino Monda ◽  
Andrea Viggiano ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhuochao Liu ◽  
Hongyi Wang ◽  
Chuanzhen Hu ◽  
Chuanlong Wu ◽  
Jun Wang ◽  
...  

AbstractIn this study, we identified the multifaceted effects of atezolizumab, a specific monoclonal antibody against PD-L1, in tumor suppression except for restoring antitumor immunity, and investigated the promising ways to improve its efficacy. Atezolizumab could inhibit the proliferation and induce immune-independent apoptosis of osteosarcoma cells. With further exploration, we found that atezolizumab could impair mitochondria of osteosarcoma cells, resulting in increased release of reactive oxygen species and cytochrome-c, eventually leading to mitochondrial-related apoptosis via activating JNK pathway. Nevertheless, the excessive release of reactive oxygen species also activated the protective autophagy of osteosarcoma cells. Therefore, when we combined atezolizumab with autophagy inhibitors, the cytotoxic effect of atezolizumab on osteosarcoma cells was significantly enhanced in vitro. Further in vivo experiments also confirmed that atezolizumab combined with chloroquine achieved the most significant antitumor effect. Taken together, our study indicates that atezolizumab can induce mitochondrial-related apoptosis and protective autophagy independently of the immune system, and targeting autophagy is a promising combinatorial approach to amplify its cytotoxicity.


2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


2014 ◽  
Vol 20 (5) ◽  
pp. 1249-1258 ◽  
Author(s):  
Tamer E. Fandy ◽  
Anchalee Jiemjit ◽  
Manjusha Thakar ◽  
Paulette Rhoden ◽  
Lauren Suarez ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7509
Author(s):  
Hai Huang ◽  
Jun-Koo Yi ◽  
Su-Geun Lim ◽  
Sijun Park ◽  
Haibo Zhang ◽  
...  

Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi37-vi37
Author(s):  
Gabrielle Price ◽  
Daniel Rivera ◽  
Alexandros Bouras ◽  
Constantinos Hadjipanayis

Abstract Diffuse midline gliomas (DMGs) are highly invasive, unresectable tumors in children. To date, there is no effective treatment for DMGs. Fractionated radiotherapy (RT), currently the standard of care, has provided limited disease control. Current obstacles to treatment include the blood brain barrier (BBB) that limits systemic drug delivery, tumor therapy resistance, and brainstem infiltration. Given the unmet need for more effective DMG treatments, photodynamic therapy (PDT), with the precursor photosensitizing agent 5-aminolevulinic acid (5-ALA), is an oncologic treatment that holds promise. 5-ALA PDT of tumors occurs by targeting tumor cells that accumulate the 5-ALA metabolite, protoporphyrin IX (PPIX), with 635 nm light to create deadly reactive oxygen species (ROS). We explore the synergism of 5-ALA PDT with the MEK inhibitor, trametinib, since the RAS/MEK signaling pathway regulates tumor cell proliferation and survival and has been shown to therapeutically enhance PDT in select tumor models. We demonstrated that sub-micromolar levels of 5-ALA PDT and nanomolar levels of trametinib successfully decrease cell proliferation and induce apoptosis in multiple DMG cell lines. Cell viability assays revealed that drug response differs based on the histone mutation (H3.1 or H3.3) of the line. Mechanisms of decreased cell survival involves the generation of reactive oxygen species that induces programmed cell death. Through the use of a DMG genetically engineered mouse model, we also found 5-ALA PDT to induce apoptosis in vivo. The synergistic effects of MEK inhibition and 5-ALA PDT in vitro and apoptotic effects of 5-ALA PDT in vivo, highlights the potential therapeutic efficacy of this treatment modality.


Sign in / Sign up

Export Citation Format

Share Document