Aurora-A-mediated phosphorylation of LKB1 compromises LKB1/AMPK signaling axis to facilitate NSCLC growth and migration

Oncogene ◽  
2017 ◽  
Vol 37 (4) ◽  
pp. 502-511 ◽  
Author(s):  
X Zheng ◽  
J Chi ◽  
J Zhi ◽  
H Zhang ◽  
D Yue ◽  
...  
2021 ◽  
Vol 33 (3) ◽  
pp. 565-580.e7
Author(s):  
Suzhen Chen ◽  
Xiaoxiao Liu ◽  
Chao Peng ◽  
Chang Tan ◽  
Honglin Sun ◽  
...  

2016 ◽  
Vol 344 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Yi-Chao Hsu ◽  
Chien-Yu Kao ◽  
Yu-Fen Chung ◽  
Don-Ching Lee ◽  
Jen-Wei Liu ◽  
...  

2017 ◽  
Vol 474 (7) ◽  
pp. 1289-1292 ◽  
Author(s):  
John W. Scott ◽  
Jonathan S. Oakhill

Maintaining a steady balance between nutrient supply and energy demand is essential for all living organisms and is achieved through the dynamic control of metabolic processes that produce and consume adenosine-5′-triphosphate (ATP), the universal currency of energy in all cells. A key sensor of cellular energy is the adenosine-5′-monophosphate (AMP)-activated protein kinase (AMPK), which is the core component of a signaling network that regulates energy and nutrient metabolism. AMPK is activated by metabolic stresses that decrease cellular ATP, and functions to restore energy balance by orchestrating a switch in metabolism away from anabolic pathways toward energy-generating catabolic processes. A new study published in a recent issue of Biochemical Journal by Zibrova et al. shows that glutamine:fructose-6-phosphate amidotransferase-1 (GFAT1), the rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), is a physiological substrate of AMPK. The HBP is an offshoot of the glycolytic pathway that drives the synthesis of uridine-5′-diphospho-N-acetylglucosamine, the requisite donor metabolite needed for dynamic β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of cellular proteins. O-GlcNAcylation is a nutrient-sensitive post-translational modification that, like phosphorylation, regulates numerous intracellular processes. Zibrova et al. show that inhibitory phosphorylation of the GFAT1 residue Ser243 by AMPK in response to physiological or small-molecule activators leads to a reduction in cellular protein O-GlcNAcylation. Further work revealed that AMPK-dependent phosphorylation of GFAT1 promotes angiogenesis in endothelial cells. This elegant study demonstrates that the AMPK–GFAT1 signaling axis serves as an important communication point between two nutrient-sensitive signaling pathways and is likely to play a significant role in controlling physiological processes in many other tissues.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi259-vi259
Author(s):  
Lili Chen ◽  
Ming Li

Abstract Guanylate binding protein 1 (GBP1) is an interferon-inducible large GTPase which plays a key role in tumor development, but the molecular mechanism is poorly understood. Here we investigated whether GBP1 could influence the tumor microenvironment in glioblastoma, the most common and malignant brain tumor. We found that forced expression of GBP1 in glioblastoma cells induced macrophage polarization toward an M2 phenotype via upregulating Chemokine (C-C motif) ligand 2 (CCL2). CCL2 acted via its receptor C-C chemokine receptor 2 (CCR2) to enhance macrophage cell migration in vitro. The M2 macrophages in turn promoted glioblastoma cell proliferation and migration. The orthotopic mouse model showed that GBP1 recruited M2 macrophages into tumor to promote glioblastoma progression, and targeting CCL2/CCR2 signaling axis with a small molecule inhibitor RS504393 led to decreased macrophage attraction and M2 polarization and a significant tumor growth retardation and prolonged survival of tumor-bearing mice. Clinically, GBP1 expression positively correlated with M2 macrophage numbers and CCL2 expression in glioblastoma. Taken together, our results reveal that GBP1 modulates the tumor immune microenvironment through CCL2 induction to promote glioblastoma infiltrating growth, and targeting tumor-associated macrophages may represent a new therapeutic strategy against glioblastoma.


2019 ◽  
Author(s):  
Fanghua Gong ◽  
Qiongzhen Chen ◽  
Jinmeng Li ◽  
Xiaoning Yang ◽  
Junfeng Ma ◽  
...  

Abstract Background: Loss of primary cilia is frequently observed in tumor cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction, the inability to exit the cell cycle, and promotion of tumor cell invasion. Primary cilia loss also occurs in esophageal squamous cell carcinoma (ESCC) cells, but the molecular mechanisms that explain how ESCC cells lose primary cilia remain poorly understood. Methods: Inhibiting the expression of Prdx1 in the ESCC cells to detect the up-regulated genes related to cilium regeneration and down-regulated genes related to cilium disassembly by Gene chip. And, mice and cell experiments were carried to confirm the role of the HEF1-Aurora A-HDAC6 signaling axis in ESCC. Results: In this study, we found that silencing Peroxiredoxin 1 (Prdx1) restores primary cilia formation, and over-expressing Prdx1 induces primary cilia loss in ESCC cells. We also showed that the expression of Prdx1 regulates the action of the HEF1-Aurora A-HDAC6 signaling axis to promote the disassembly of primary cilia, and suppression of Prdx1 results in decreased tumor formation and tumor mass volume in vivo. Conclusions: These results suggest that Prdx1 is a novel regulator of primary cilia formation in ESCC cells.


Theranostics ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 6928-6945
Author(s):  
Huizhen Sun ◽  
Husheng Wang ◽  
Xue Wang ◽  
Yoichi Aoki ◽  
Xinjing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document