Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy

2020 ◽  
Vol 65 (10) ◽  
pp. 921-925
Author(s):  
Takuya Hiraide ◽  
Mitsuko Nakashima ◽  
Takahiro Ikeda ◽  
Daisuke Tanaka ◽  
Hitoshi Osaka ◽  
...  
Keyword(s):  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Bogutzki ◽  
Natalie Naue ◽  
Lidia Litz ◽  
Andreas Pich ◽  
Ute Curth

Abstract During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3′-terminus of the primer provides four C-termini for protein-protein interactions.


2021 ◽  
Vol 22 (14) ◽  
pp. 7298
Author(s):  
Izabela Rudzińska ◽  
Małgorzata Cieśla ◽  
Tomasz W. Turowski ◽  
Alicja Armatowska ◽  
Ewa Leśniewska ◽  
...  

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


2021 ◽  
Vol 48 (3) ◽  
pp. 2775-2789
Author(s):  
Ludwig Stenz

AbstractThe 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.


2020 ◽  
Author(s):  
Fangyan Yu ◽  
Ka Wai Leong ◽  
Alexander Makrigiorgos ◽  
Viktor A Adalsteinsson ◽  
Ioannis Ladas ◽  
...  

Abstract Sensitive detection of microsatellite instability (MSI) in tissue or liquid biopsies using next generation sequencing (NGS) has growing prognostic and predictive applications in cancer. However, the complexities of NGS make it cumbersome as compared to established multiplex-PCR detection of MSI. We present a new approach to detect MSI using inter-Alu-PCR followed by targeted NGS, that combines the practical advantages of multiplexed-PCR with the breadth of information provided by NGS. Inter-Alu-PCR employs poly-adenine repeats of variable length present in every Alu element and provides a massively-parallel, rapid approach to capture poly-A-rich genomic fractions within short 80–150bp amplicons generated from adjacent Alu-sequences. A custom-made software analysis tool, MSI-tracer, enables Alu-associated MSI detection from tissue biopsies or MSI-tracing at low-levels in circulating-DNA. MSI-associated indels at somatic-indel frequencies of 0.05–1.5% can be detected depending on the availability of matching normal tissue and the extent of instability. Due to the high Alu copy-number in human genomes, a single inter-Alu-PCR retrieves enough information for identification of MSI-associated-indels from ∼100 pg circulating-DNA, reducing current limits by ∼2-orders of magnitude and equivalent to circulating-DNA obtained from finger-sticks. The combined practical and informational advantages of inter-Alu-PCR make it a powerful tool for identifying tissue-MSI-status or tracing MSI-associated-indels in liquid biopsies.


2021 ◽  
Vol 10 (11) ◽  
pp. 2265
Author(s):  
Kei Mizobuchi ◽  
Takaaki Hayashi ◽  
Noriko Oishi ◽  
Daiki Kubota ◽  
Shuhei Kameya ◽  
...  

Background: Little is known about genotype–phenotype correlations of RP1-associated retinal dystrophies in the Japanese population. We aimed to investigate the genetic spectrum of RP1 variants and provide a detailed description of the clinical findings in Japanese patients. Methods: In total, 607 patients with inherited retinal diseases were examined using whole-exome/whole-genome sequencing (WES/WGS). PCR-based screening for an Alu element insertion (c.4052_4053ins328/p.Tyr1352AlafsTer9) was performed in 18 patients with autosomal-recessive (AR)-retinitis pigmentosa (RP) or AR-cone dystrophy (COD)/cone-rod dystrophy (CORD), including seven patients with heterozygous RP1 variants identified by WES/WGS analysis, and 11 early onset AR-RP patients, in whom no pathogenic variant was identified. We clinically examined 25 patients (23 families) with pathogenic RP1 variants, including five patients (five families) with autosomal-dominant (AD)-RP, 13 patients (11 families) with AR-RP, and seven patients (seven families) with AR-COD/CORD. Results: We identified 18 pathogenic RP1 variants, including seven novel variants. Interestingly, the Alu element insertion was the most frequent variant (32.0%, 16/50 alleles). The clinical findings revealed that the age at onset and disease progression occurred significantly earlier and faster in AR-RP patients compared to AD-RP or AR-COD/CORD patients. Conclusions: Our results suggest a genotype–phenotype correlation between variant types/locations and phenotypes (AD-RP, AR-RP, and AR-COD/CORD), and the Alu element insertion was the most major variant in Japanese patients with RP1-associated retinal dystrophies.


2006 ◽  
Vol 22 (5) ◽  
pp. 633-644 ◽  
Author(s):  
Douglas N. Roberts ◽  
Boris Wilson ◽  
Jason T. Huff ◽  
Allen J. Stewart ◽  
Bradley R. Cairns

2012 ◽  
Vol 91 (5) ◽  
pp. 972 ◽  
Author(s):  
Geneviève Bernard ◽  
Eliane Chouery ◽  
Maria Lisa Putorti ◽  
Martine Tétreault ◽  
Asako Takanohashi ◽  
...  

2008 ◽  
Vol 13 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Max Myakishev ◽  
Oksana Polesskaya ◽  
Valentina Kulichkova ◽  
Ancha Baranova ◽  
Larissa Gause ◽  
...  
Keyword(s):  

2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Zekun Wang ◽  
Weiran Shen ◽  
Fang Cheng ◽  
Xuefeng Deng ◽  
John F. Engelhardt ◽  
...  

ABSTRACT Human bocavirus 1 (HBoV1) belongs to the species Primate bocaparvovirus of the genus Bocaparvovirus of the Parvoviridae family. HBoV1 causes acute respiratory tract infections in young children and has a selective tropism for the apical surface of well-differentiated human airway epithelia (HAE). In this study, we identified an additional HBoV1 gene, bocavirus-transcribed small noncoding RNA (BocaSR), within the 3′ noncoding region (nucleotides [nt] 5199 to 5338) of the viral genome of positive sense. BocaSR is transcribed by RNA polymerase III (Pol III) from an intragenic promoter at levels similar to that of the capsid protein-coding mRNA and is essential for replication of the viral DNA in both transfected HEK293 and infected HAE cells. Mechanistically, we showed that BocaSR regulates the expression of HBoV1-encoded nonstructural proteins NS1, NS2, NS3, and NP1 but not NS4. BocaSR is similar to the adenovirus-associated type I (VAI) RNA in terms of both nucleotide sequence and secondary structure but differs from it in that its regulation of viral protein expression is independent of RNA-activated protein kinase (PKR) regulation. Notably, BocaSR accumulates in the viral DNA replication centers within the nucleus and likely plays a direct role in replication of the viral DNA. Our findings reveal BocaSR to be a novel viral noncoding RNA that coordinates the expression of viral proteins and regulates replication of viral DNA within the nucleus. Thus, BocaSR may be a target for antiviral therapies for HBoV and may also have utility in the production of recombinant HBoV vectors. IMPORTANCE Human bocavirus 1 (HBoV1) is pathogenic to humans, causing acute respiratory tract infections in young children. In this study, we identified a novel HBoV1 gene that lies in the 3′ noncoding region of the viral positive-sense genome and is transcribed by RNA polymerase III into a noncoding RNA of 140 nt. This bocavirus-transcribed small RNA (BocaSR) diverges from both adenovirus-associated (VA) RNAs and Epstein-Barr virus-encoded small RNAs (EBERs) with respect to RNA sequence, representing a third species of this kind of Pol III-dependent viral noncoding RNA and the first noncoding RNA identified in autonomous parvoviruses. Unlike the VA RNAs, BocaSR localizes to the viral DNA replication centers of the nucleus and is essential for expression of viral nonstructural proteins independent of RNA-activated protein kinase R and replication of HBoV1 genomes. The identification of BocaSR and its role in virus DNA replication reveals potential avenues for developing antiviral therapies.


Sign in / Sign up

Export Citation Format

Share Document