scholarly journals LSD1: more than demethylation of histone lysine residues

2020 ◽  
Vol 52 (12) ◽  
pp. 1936-1947
Author(s):  
Bruno Perillo ◽  
Alfonso Tramontano ◽  
Antonio Pezone ◽  
Antimo Migliaccio

AbstractLysine-specific histone demethylase 1 (LSD1) represents the first example of an identified nuclear protein with histone demethylase activity. In particular, it plays a special role in the epigenetic regulation of gene expression, as it removes methyl groups from mono- and dimethylated lysine 4 and/or lysine 9 on histone H3 (H3K4me1/2 and H3K9me1/2), behaving as a repressor or activator of gene expression, respectively. Moreover, it has been recently found to demethylate monomethylated and dimethylated lysine 20 in histone H4 and to contribute to the balance of several other methylated lysine residues in histone H3 (i.e., H3K27, H3K36, and H3K79). Furthermore, in recent years, a plethora of nonhistone proteins have been detected as targets of LSD1 activity, suggesting that this demethylase is a fundamental player in the regulation of multiple pathways triggered in several cellular processes, including cancer progression. In this review, we analyze the molecular mechanism by which LSD1 displays its dual effect on gene expression (related to the specific lysine target), placing final emphasis on the use of pharmacological inhibitors of its activity in future clinical studies to fight cancer.

2004 ◽  
Vol 24 (20) ◽  
pp. 8823-8833 ◽  
Author(s):  
Nevin Sabet ◽  
Sam Volo ◽  
Cailin Yu ◽  
James P. Madigan ◽  
Randall H. Morse

ABSTRACT The histone amino termini have emerged as key targets for a variety of modifying enzymes that function as transcriptional coactivators and corepressors. However, an important question that has remained largely unexplored is the extent to which specific histone amino termini are required for the activating and repressive functions of these enzymes, Here we address this issue by focusing on the prototypical histone deacetylase, Rpd3p, in the budding yeast Saccharomyces cerevisiae. We show that targeting Rpd3p to a reporter gene in this yeast can partially repress transcription when either the histone H3 or the histone H4 amino terminus is deleted, indicating that the “tails” are individually dispensable for repression by Rpd3p. In contrast, we find that the effect of rpd3 gene disruption on global gene expression is considerably reduced in either a histone H3Δ1-28 (H3 lacking the amino-terminal 28 amino acids) or a histone H4(K5,8,12,16Q) (H4 with lysine residues 5, 8, 12, and 16 changed to glutamine residues) background compared to the wild-type background, indicating a requirement for one or both of these histone tails in Rpd3p-mediated regulation for many genes. These results suggest that acetylation of either the H3 or the H4 amino terminus could suffice to allow the activation of such genes. We also examine the relationship between H3 tails and H4 tails in global gene expression and find substantial overlap among the gene sets regulated by these histone tails. We also show that the effects on genome-wide expression of deleting the H3 or H4 amino terminus are similar but not identical to the effects of mutating the lysine residues in these same regions. These results indicate that the gene regulatory potential of the H3 and H4 amino termini is substantially but not entirely contained in these modifiable lysine residues.


2020 ◽  
Author(s):  
Thomas W. Sheahan ◽  
Viktoria Major ◽  
Kimberly M. Webb ◽  
Elana Bryan ◽  
Philipp Voigt

AbstractThe closely related acetyltransferases CBP and p300 are key regulators of gene expression in metazoans. CBP/p300 acetylate several specific lysine residues within nucleosomes, including histone H3 lysine 27 (H3K27), a hallmark of active enhancers and promoters. However, it has remained largely unclear how specificity of CBP/p300 towards H3K27 is achieved. Here we show that the TAZ2 domain of CBP is required for efficient acetylation of H3K27, while curbing activity towards other lysine residues within nucleosomes. We find that TAZ2 is a sequence-independent DNA binding module, promoting interaction between CBP and nucleosomes, thereby enhancing enzymatic activity and regulating substrate specificity of CBP. TAZ2 is further required to stabilize CBP binding to chromatin in mouse embryonic stem cells, facilitating specificity towards H3K27 and modulating gene expression. These findings reveal a crucial role of TAZ2 in regulating H3K27ac, while highlighting the importance of correct site-specific acetylation for proper regulation of gene expression.


2011 ◽  
Vol 437 (3) ◽  
pp. 555-564 ◽  
Author(s):  
Masakazu Yoshida ◽  
Akihiko Ishimura ◽  
Minoru Terashima ◽  
Zanabazar Enkhbaatar ◽  
Naohito Nozaki ◽  
...  

PLU1 is a candidate oncogene that encodes H3K4 (Lys4 of histone H3) demethylase. In the present study, we found that ectopic expression of PLU1 enhanced the invasive potential of the weakly invasive cells dependent on its demethylase activity. PLU1 was shown to repress the expression of the KAT5 gene through its H3K4 demethylation on the promoter. The regulation of KAT5 by PLU1 was suggested to be responsible for PLU1-induced cell invasion. First, knockdown of KAT5 similarly increased the invasive potential of the cells. Secondly, knockdown of PLU1 in the highly invasive cancer cells increased KAT5 expression and reduced the invasive activity. Thirdly, simultaneous knockdown of KAT5 partially relieved the suppression of cell invasion imposed by PLU1 knockdown. Finally, we found that CD82, which was transcriptionally regulated by KAT5, might be a candidate effector of cell invasion promoted by PLU1. The present study demonstrated a functional contribution of PLU1 overexpression with concomitant epigenetic dysregulation in cancer progression.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


2020 ◽  
Vol 295 (26) ◽  
pp. 8736-8745 ◽  
Author(s):  
Akihiko Sakamoto ◽  
Yusuke Terui ◽  
Takeshi Uemura ◽  
Kazuei Igarashi ◽  
Keiko Kashiwagi

Polyamines regulate gene expression in Escherichia coli by translationally stimulating mRNAs encoding global transcription factors. In this study, we focused on histone acetylation, one of the mechanisms of epigenetic regulation of gene expression, to attempt to clarify the role of polyamines in the regulation of gene expression in eukaryotes. We found that activities of histone acetyltransferases in both the nucleus and cytoplasm decreased significantly in polyamine-reduced mouse mammary carcinoma FM3A cells. Although protein levels of histones H3 and H4 did not change in control and polyamine-reduced cells, acetylation of histones H3 and H4 was greatly decreased in the polyamine-reduced cells. Next, we used control and polyamine-reduced cells to identify histone acetyltransferases whose synthesis is stimulated by polyamines. We found that polyamines stimulate the translation of histone acetyltransferases GCN5 and HAT1. Accordingly, GCN5- and HAT1-catalyzed acetylation of specific lysine residues on histones H3 and H4 was stimulated by polyamines. Consistent with these findings, transcription of genes required for cell proliferation was enhanced by polyamines. These results indicate that polyamines regulate gene expression by enhancing the expression of the histone acetyltransferases GCN5 and HAT1 at the level of translation. Mechanistically, polyamines enhanced the interaction of microRNA-7648-5p (miR-7648-5p) with the 5′-UTR of GCN5 mRNA, resulting in stimulation of translation due to the destabilization of the double-stranded RNA (dsRNA) between the 5′-UTR and the ORF of GCN5 mRNA. Because HAT1 mRNA has a short 5′-UTR, polyamines may enhance initiation complex formation directly on this mRNA.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 523-523
Author(s):  
Marco De Gobbi ◽  
Vip Viprakasit ◽  
Pieter J. de Jong ◽  
Yuko Yoshinaga ◽  
Jan-Fang Cheng ◽  
...  

Abstract The human α globin cluster includes an embryonic gene ζ and 2 fetal/adult genes (α2 and α1) arranged along the chromosome in the order in which they are expressed in development (5′-ζ-pseudoζ- αD- α2-α1-𝛉-3′). Fully activated expression of these genes in erythroid cells depends on upstream regulatory elements of which HS-40, located 40kb upstream of the cluster, appears to exert the greatest effect. We have recently shown that during terminal differentiation, key transcription factors (GATA-2, GATA-1, NF-E2, SCL complex) sequentially bind the α promoters and their regulatory elements and a domain of histone acetylation develops which eventually encompasses the entire α globin cluster including the upstream regulatory sequences. α-thalassemia most frequently results from deletions or point mutations affecting the structural α globin genes, but may also result from rare sporadic deletions which remove the upstream regulatory sequences. In a single family α globin expression was silenced by a mutation which drives an anti-sense RNA through the α gene. Alpha thalassemia may also result from inherited and acquired mutations in a trans-acting factor called ATRX. Over the past few years we have continued to screen for new mechanisms which lead to α thalassemia and thereby elucidate new principles underlying the regulation of gene expression in hemopoiesis. Here we describe a new mechanism of α thalassemia occurring in Pacific Islanders in whom we could detect no mutations or rearrangements in the α globin gene locus. Despite this, extensive genetic analysis showed unequivocally that the causative mutation is linked to the terminal 169kb of chromosome 16 (Viprakasit et al accompanying abstract). Analysis of globin synthesis, steady state RNA levels and detection of RNA in situ demonstrated that the mutation downregulates α globin transcription. To identify the mutation, we constructed a new BAC library from an affected homozygote, isolated and re-sequenced the candidate region and focussed further analysis on 8 SNPS within the α globin cluster, one of which creates a new GATA-1 binding site (GACA>GATA). Using primary erythroblasts from normal individuals and patients with this form of thalassemia, together with interspecific hybrids containing either the normal or abnormal copy of chromosome 16, we have shown that this SNP creates a new binding site in vivo for GATA-1 and the SCL complex. Furthermore, the chromatin at this site becomes activated as judged by acetylation of histone H3 and H4 (H3ac2 and H4ac4) and methylation of histone H3 (H3K4me2). Based on these data we postulate that an active transcriptional complex binding this new GATA site created by the SNP-mutation, could distract the upstream regulatory regions, which normally interact with the α globin promoter, and silence α globin gene expression. This model thus represents a new example of α globin gene down-regulation and a new mechanism by which gene expression can be perturbed during hemopoiesis.


2016 ◽  
Vol 10 ◽  
pp. BCBCR.S40182 ◽  
Author(s):  
Jeison Garcia ◽  
Fernando Lizcano

The Jumonji-containing domain protein, KDM4C, is a histone demethylase associated with the development of several forms of human cancer. However, its specific function in the viability of tumoral lineages is yet to be determined. This work investigates the importance of KDM4C activity in cell proliferation and chromosome segregation of three triple-negative breast cancer cell lines using a specific demethylase inhibitor. Immunofluorescence assays show that KDM4C is recruited to mitotic chromosomes and that the modulation of its activity increases the number of mitotic segregation errors. However, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell proliferation assays demonstrate that the demethylase activity is required for cell viability. These results suggest that the histone demethylase activity of KDM4C is essential for breast cancer progression given its role in the maintenance of chromosomal stability and cell growth, thus highlighting it as a potential therapeutic target.


2018 ◽  
Vol 103 (4) ◽  
pp. 1545-1557 ◽  
Author(s):  
Sruthi Alahari ◽  
Martin Post ◽  
Alessandro Rolfo ◽  
Rosanna Weksberg ◽  
Isabella Caniggia

Abstract Context The von Hippel Lindau (VHL) protein is a key executor of the cellular hypoxic response that is compromised in preeclampsia, a serious disorder complicating 5% to 7% of pregnancies. To date, the mechanisms controlling VHL gene expression in the human placenta remain elusive. Objective We examined VHL epigenetic regulation in normal pregnancy and in preeclampsia, a pathology characterized by placental hypoxia. Design, Setting, and Participants Placentae were obtained from early-onset preeclampsia (n = 56; <34 weeks of gestation) and late-onset preeclampsia (n = 19; ≥34 weeks of gestation). Placentae from healthy normotensive age-matched preterm control (n = 43) and term control (n = 23) pregnancies were included as controls. Main Outcome Measure(s) We measured the activity of Jumonji domain containing protein 6 (JMJD6), a ferrous iron (Fe2+)– and oxygen-dependent histone demethylase, and examined its function in the epigenetic control of VHL. Results JMJD6 regulates VHL gene expression in the human placenta. VHL downregulation in preeclampsia is dependent on decreased JMJD6 demethylase activity due to hypoxia and reduced Fe2+ bioavailability. Chromatin immunoprecipitation assays revealed decreased association of JMJD6 and its histone targets with the VHL promoter. Findings in preeclampsia were corroborated in a murine model of pharmacological hypoxia using FG-4592. Placentae from FG-4592–treated mice exhibited reduced VHL levels, accompanied by placental morphological alterations and reduced pup weights. Notably, Fe2+ supplementation rescued JMJD6 histone demethylase activity in histone from E-PE and FG-4592–treated mice. Conclusions Our study uncovers epigenetic regulation of VHL and its functional consequences for altered oxygen and iron homeostasis in preeclampsia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nobutoshi Yamaguchi

Trimethylation of histone H3 lysine 27 (H3K27me3) is a highly conserved repressive histone modification that signifies transcriptional repression in plants and animals. In Arabidopsis thaliana, the demethylation of H3K27 is regulated by a group of JUMONJI DOMAIN-CONTANING PROTEIN (JMJ) genes. Transcription of JMJ genes is spatiotemporally regulated during plant development and in response to the environment. Once JMJ genes are transcribed, recruitment of JMJs to target genes, followed by demethylation of H3K27, is critically important for the precise control of gene expression. JMJs function synergistically and antagonistically with transcription factors and/or other epigenetic regulators on chromatin. This review summarizes the latest advances in our understanding of Arabidopsis H3K27me3 demethylases that provide robust and flexible epigenetic regulation of gene expression to direct appropriate development and environmental responses in plants.


1991 ◽  
Vol 11 (6) ◽  
pp. 3070-3074
Author(s):  
T Choi ◽  
M Huang ◽  
C Gorman ◽  
R Jaenisch

To investigate the role of splicing in the regulation of gene expression, we have generated transgenic mice carrying the human histone H4 promoter linked to the bacterial gene for chloramphenicol acetyltransferase (CAT), with or without a heterologous intron in the transcription unit. We found that CAT activity is 5- to 300-fold higher when the transgene incorporates a hybrid intron than with an analogous transgene precisely deleted for the intervening sequences. This hybrid intron, consisting of an adenovirus splice donor and an immunoglobulin G splice acceptor, stimulated expression in a broad range of tissues in the animal. Although the presence of the hybrid intron increased the frequency of transgenics with significant CAT activity, it did not affect the integration site-dependent variation commonly seen in transgene expression. To determine whether the enhancement is a general outcome of splicing or is dependent on the particular intron, we also produced equivalent transgenics carrying the widely used simian virus 40 small-t intron. We found that the hybrid intron is significantly more effective in elevating transgene expression. Our results suggest that inclusion of the generic intron in cDNA constructs may be valuable in achieving high levels of expression in transgenic mice.


Sign in / Sign up

Export Citation Format

Share Document