scholarly journals Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission

Author(s):  
Dae-Wi Kim ◽  
Chang-Jun Cha

AbstractThe concept of the antibiotic resistome was introduced just over a decade ago, and since then, active resistome studies have been conducted. In the present study, we describe the previously established concept of the resistome, which encompasses all types of antibiotic resistance genes (ARGs), and the important findings from each One-Health sector considering this concept, thereby emphasizing the significance of the One-Health approach in understanding ARG transmission. Cutting-edge research methodologies are essential for deciphering the complex resistome structure in the microbiomes of humans, animals, and the environment. Based on the recent achievements of resistome studies in multiple One-Health sectors, future directions for resistome research have been suggested to improve the understanding and control of ARG transmission: (1) ranking the critical ARGs and their hosts; (2) understanding ARG transmission at the interfaces of One-Health sectors; (3) identifying selective pressures affecting the emergence, transmission, and evolution of ARGs; and (4) elucidating the mechanisms that allow an organism to overcome taxonomic barriers in ARG transmission.

2021 ◽  
pp. 127407
Author(s):  
Aleksandra Miłobedzka ◽  
Catarina Ferreira ◽  
Ivone Vaz-Moreira ◽  
David Calderón-Franco ◽  
Adrian Gorecki ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Lauren L. Wind ◽  
Jonathan S. Briganti ◽  
Anne M. Brown ◽  
Timothy P. Neher ◽  
Meghan F. Davis ◽  
...  

The success of a One Health approach to combating antimicrobial resistance (AMR) requires effective data sharing across the three One Health domains (human, animal, and environment). To investigate if there are differences in language use across the One Health domains, we examined the peer-reviewed literature using a combination of text data mining and natural language processing techniques on 20,000 open-access articles related to AMR and One Health. Evaluating AMR key term frequency from the European PubMed Collection published between 1990 and 2019 showed distinct AMR language usage within each domain and incongruent language usage across domains, with significant differences in key term usage frequencies when articles were grouped by the One Health sub-specialties (2-way ANOVA; p < 0.001). Over the 29-year period, “antibiotic resistance” and “AR” were used 18 times more than “antimicrobial resistance” and “AMR”. The discord of language use across One Health potentially weakens the effectiveness of interdisciplinary research by creating accessibility issues for researchers using search engines. This research was the first to quantify this disparate language use within One Health, which inhibits collaboration and crosstalk between domains. We suggest the following for authors publishing AMR-related research within the One Health context: (1) increase title/abstract searchability by including both antimicrobial and antibiotic resistance related search terms; (2) include “One Health” in the title/abstract; and (3) prioritize open-access publication.


2019 ◽  
Author(s):  
Sanjeet Kumar ◽  
Kanika Bansal ◽  
Prashant P. Patil ◽  
Amandeep Kaur ◽  
Satinder Kaur ◽  
...  

ABSTRACTWe report first complete genome sequence and analysis of an extreme drug resistance (XDR) nosocomial Stenotrophomonas maltophilia that is resistant to the mainstream drugs i.e. trimethoprim/sulfamethoxazole (TMP/SXT) and levofloxacin. Taxonogenomic analysis revealed it to be a novel genomospecies of the Stenotrophomonas maltophilia complex (Smc). Comprehensive genomic investigation revealed fourteen dynamic regions (DRs) exclusive to SM866, consisting of diverse antibiotic resistance genes, efflux pumps, heavy metal resistance, various transcriptional regulators etc. Further, resistome analysis of Smc clearly depicted SM866 to be an enriched strain, having diversified resistome consisting of sul1 and sul2 genes. Interestingly, SM866 does not have any plasmid but it harbors two diverse super-integrons of chromosomal origin. Apart from genes for sulfonamide resistance (sul1 and sul2), both of these integrons harbor an array of antibiotic resistance genes linked to ISCR (IS91-like elements common regions) elements. These integrons also harbor genes encoding resistance to commonly used disinfectants like quaternary ammonium compounds and heavy metals like mercury. Hence, isolation of a novel strain belonging to a novel sequence type (ST) and genomospecies with diverse array of resistance from a tertiary care unit of India indicates extent and nature of selection pressure driving XDRs in hospital settings. There is an urgent need to employ complete genome based investigation using emerging technologies for tracking emergence of XDR at the global level and designing strategies of sanitization and antibiotic regime.Impact StatementThe hospital settings in India have one of the highest usage of antimicrobials and heavy patient load. Our finding of a novel clinical isolate of S. maltophilia complex with two super-integrons harbouring array of antibiotic resistance genes along with antimicrobials resistance genes indicates the extent and the nature of selection pressures in action. Further, the presence of ISCR type of transposable elements on both integrons not only indicates its propensity to transfer resistome but also their chromosomal origin suggests possibilities for further genomic/phenotypic complexities. Such complex cassettes and strain are potential threat to global health care. Hence, there is an urgent need to employ cost-effective long read technologies to keep vigilance on novel and extreme antimicrobial resistance pathogens in populous countries. There is also need for surveillance for usage of antimicrobials for hygiene and linked/rapid co-evolution of extreme drug resistance in nosocomial pathogens. Our finding of the chromosomal encoding XDR will shed a light on the need of hour to understand the evolution of an opportunistic nosocomial pathogen belonging to S. maltophilia.RepositoriesComplete genome sequence of Stenotrophomonas maltophilia SM866: CP031058


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


Author(s):  
Andrew Scott ◽  
Roger Murray ◽  
Yuan-Ching Tien ◽  
Edward Topp

The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: At harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than did hay from unamended control plots. Fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids did result in a few gene targets being more abundant on hay at the first harvest. Fermentation of hay did result in an increase in the abundance of gene targets, but this occurred both with hay from amended and control plots. Overall, application of fecal amendments will result in an increase in the abundance of some gene targets associated with antibiotic resistance on first cut hay.


2019 ◽  
Vol 74 (6) ◽  
pp. 1484-1493 ◽  
Author(s):  
Happiness H Kumburu ◽  
Tolbert Sonda ◽  
Marco van Zwetselaar ◽  
Pimlapas Leekitcharoenphon ◽  
Oksana Lukjancenko ◽  
...  

2002 ◽  
Vol 184 (15) ◽  
pp. 4259-4269 ◽  
Author(s):  
John W. Beaber ◽  
Bianca Hochhut ◽  
Matthew K. Waldor

ABSTRACT SXT is representative of a family of conjugative-transposon-like mobile genetic elements that encode multiple antibiotic resistance genes. In recent years, SXT-related conjugative, self-transmissible integrating elements have become widespread in Asian Vibrio cholerae. We have determined the 100-kb DNA sequence of SXT. This element appears to be a chimera composed of transposon-associated antibiotic resistance genes linked to a variety of plasmid- and phage-related genes, as well as to many genes from unknown sources. We constructed a nearly comprehensive set of deletions through the use of the one-step chromosomal gene inactivation technique to identify SXT genes involved in conjugative transfer and chromosomal excision. SXT, unlike other conjugative transposons, utilizes a conjugation system related to that encoded by the F plasmid. More than half of the SXT genome, including the composite transposon-like structure that contains its antibiotic resistance genes, was not required for its mobility. Two SXT loci, designated setC and setD, whose predicted amino acid sequences were similar to those of the flagellar regulators FlhC and FlhD, were found to encode regulators that activate the transcription of genes required for SXT excision and transfer. Another locus, designated setR, whose gene product bears similarity to lambdoid phage CI repressors, also appears to regulate SXT gene expression.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Amirhossein Yousefi ◽  
Saam Torkan

Resistant uropathogenic Escherichia coli is the most common cause of urinary tract infections in dogs. The present research was done to study the prevalence rate and antimicrobial resistance properties of UPEC strains isolated from healthy dogs and those which suffered from UTIs. Four-hundred and fifty urine samples were collected and cultured. E. coli-positive strains were subjected to disk diffusion and PCR methods. Two-hundred out of 450 urine samples (44.4%) were positive for E. coli. Prevalence of E. coli in healthy and infected dogs was 28% and 65%, respectively. Female had the higher prevalence of E. coli (P=0.039). Marked seasonality was also observed (P=0.024). UPEC strains had the highest levels of resistance against gentamicin (95%), ampicillin (85%), amikacin (70%), amoxicillin (65%), and sulfamethoxazole-trimethoprim (65%). We found that 21.50% of UPEC strains had simultaneously resistance against more than 10 antibiotics. Aac(3)-IV (77%), CITM (52.5%), tetA (46.5%), and sul1 (40%) were the most commonly detected antibiotic resistance genes. Findings showed considerable levels of antimicrobial resistance among UPEC strains of Iranian dogs. Rapid identification of infected dogs and their treatment based on the results of disk diffusion can control the risk of UPEC strains.


Sign in / Sign up

Export Citation Format

Share Document