Retinoblastoma tumor cell proliferation is negatively associated with an immune gene expression signature and increased immune cells

Author(s):  
Aaron L. Sarver ◽  
Chencheng Xie ◽  
Megan J. Riddle ◽  
Colleen L. Forster ◽  
Xiaohong Wang ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1423-1423
Author(s):  
You Hua Yu ◽  
Na Guo ◽  
Yujing Gong ◽  
Baidong Liu ◽  
Hong Liu ◽  
...  

Abstract Abstract 1423 Patients with B cell malignaces initially respond to current treatment modalities, however, such malignances remain incurable. Many new therapeutic options have become available during the past several years but nearly all patients develop resistance to currently available therapeutic options. Ideally, a new treatment should inhibit tumor growth, improve the efficacy of other anti-tumor agents, and improve both the overal survial and the quality of life for patients. Pterostilbene is predominantly found in Rhubarb. We synthesized bipterostilbene (5-(4-(4-(3,5-dihydroxylstyryl)phenoxy)styryl)-benzene-1,3-diol) (C28H22O5) of a molecular weight of 438.48 Kda. In this study, we first examined whether bipterostilbene affects tumor cells proliferation using breast cancer, ovarian cancer, lymphoma and multiple myeloma (MM) cell lines. The results of the MTS assay demonstrated that bipterostilbene significantly inhibited tumor cell proliferation of the lymphoma cell line (Raji) and the MM cell lines (RPMI1640 and MM1s) at 48 hours (IC50: 5μM for Raji, 4μM for RPMI8226, and 2 μM for MM1s). The induction of tumor cell apoptosis was most prominent at 72 hours. The extent of the inhibition of tumor cell proliferation and the induction of apoptosis was concentration-dependent. Bipterostilbene had minimal effects on breast and ovarian cancer cell lines. Noteworthy, bipterostilbene had no detectable cytotoxic effects on normal human peripheral blood mononuclear cells (PBMCs). The molecular mechanism by which bipterostilbene mediates its effects was examined. Both the AKT and the NF-κB signaling transduction pathways have been reported to play key roles in B cell metabolism, proliferation and survival. Using RT-PCR, bipterostilbene specifically inhibited AKT1 and mTOR gene expression when Raji or RPMI8226 tumor cells were treated with the IC50 concentration of bipterostilbene for 24 hours. Analysis of downstream gene products of the AKT pathway revealed that Cyclin D1 expression was slightly reduced and P21Cip and P27 kip expressions were not changed. Bipterostilbene did not alter AKT2 or AKT3 gene expression, demonstrating that this compound is specifically targeting AKT1. We further determined whether bipterostilbene interfered with IGF1-induced AKT/mTOR activation or IL-1β –mediated NF-κB phosphorylation by Western blot. The results showed that bipterostilbene markedly inhibited IGF1-induced phosphorylation of AKT but did not interfere with IL-1β-induced NF-κB activity and IκB phosphorylation. Overall, the results of our in vitro studies demonstrate that bipterostilbene inhibits tumor cell proliferation and enhances apoptosis of B-cell malignancies via inhibition of the AKT/mTOR signaling pathway with no detectable effect on the NF-κB signaling pathway. Importantly, bipterostilbene is not cytotoxic on normal hematopoietic cells at concentrations that were highly toxic to B-cell malignancies. We propose that bipterostilbene may be better tolerated than other anti- cancer drugs that are currently being used for the treatment of B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Kevin Troulé ◽  
Hugo López-Fernández ◽  
Santiago García-Martín ◽  
Miguel Reboiro-Jato ◽  
Carlos Carretero-Puche ◽  
...  

AbstractMotivationDrug immunomodulation modifies the response of the immune system and can be therapeutically exploited in pathologies such as cancer and autoimmune diseases.ResultsDREIMT is a new hypothesis-generation web tool which performs drug prioritization analysis for immunomodulation. DREIMT provides significant immunomodulatory drugs targeting up to 70 immune cells subtypes through a curated database that integrates 4,960 drug profiles and ~2,6K immune gene expression signatures. The tool also suggests potential immunomodulatory drugs targeting user-supplied gene expression signatures. Final output includes drug-signature association scores, FDRs and downloadable plots and results tables.Availabilityhttp://[email protected]; [email protected]


2020 ◽  
Author(s):  
Jinfen Wei ◽  
Kaitang Huang ◽  
Meiling Hu ◽  
Zixi Chen ◽  
Yunmeng Bai ◽  
...  

AbstractBackgroundAltered metabolism is a hallmark of cancer and glycolysis is one of the important factors promoting tumor development. Given that the absence of multi-sample big data research about glycolysis, the molecular mechanisms involved in glycolysis or the relationships between glycolysis and tumor microenvironment are not fully studied. Thus, a more comprehensive approach in a pan-cancer landscape may be needed.MethodsHere, we develop a computational pipeline to study multi-omics molecular features defining glycolysis activity and identify molecular alterations that correlate with glycolysis. We apply a 22-gene expression signature to define the glycolysis activity landscape and verify the robustness using clinically defined glycolysis samples from several previous studies. Based on gene expression signature, we classify about 5552 of 9229 tumor samples into glycolysis score-high and score-low groups across 25 cancer types from The Cancer Genome Atlas (TCGA) and demonstrate their prognostic associations. Moreover, using genomes and transcriptome data, we characterize the association of copy-number aberrations (CNAs), somatic single-nucleotide variants (SNVs) and hypoxia signature with glycolysis activity.FindingsGene set variation analysis (GSVA) score by gene set expression was verified robustly to represent glycolytic activity and highly glycolytic tumors presented a poor overall survival in some cancer types. Then, we identified various types of molecular features promoting tumor cell proliferation were associated with glycolysis activity. Our study showed that TCA cycle and respiration electron transport were active in glycolysis-high tumors, indicating glycolysis was not a symptom of impaired oxidative metabolism. The glycolytic score significantly correlated with hypoxia score across all cancer types. Glycolysis score was also associated with elevated genomic instability. In all tumor types, high glycolysis tumors exhibited characteristic driver genes altered by CNAs identified multiple oncogenes and tumor suppressors. We observed widespread glycolysis-associated dysregulation of mRNA across cancers and screened out HSPA8 and P4HA1 as the potential modulating factor to glycolysis. Besides, the expression of genes encoding glycolytic enzymes positively correlated with genes in cell cycle.InterpretationThis is the first study to identify gene expression signatures that reflect glycolysis activity, which can be easily applied to large numbers of patient samples. Our analysis establishes a computational framework for characterizing glycolysis activity using gene expression data and defines correlation of glycolysis with the hypoxia microenvironment, tumor cell cycle and proliferation at a pan-cancer landscape. The findings suggest that the mechanisms whereby hypoxia influence glycolysis are likely multifactorial. Our finding is significant not just in demonstrating definition value for glycolysis but also in providing a comprehensive molecular-level understanding of glycolysis and suggesting a framework to guide combination therapy that may block the glycolysis pathway to control tumor growth in hypoxia microenvironment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5102-5102
Author(s):  
Haiming Chen ◽  
Mingjie Li ◽  
Jennifer Li ◽  
Marissa P Dreyer ◽  
Cameryn P Ahles ◽  
...  

Abstract Abstract 5102 We have recently reported that CGEN-928 is highly expressed on the cell membrane of cell lines, human xenografts, and primary tumor cells from MM. Anti-CGEN-928 (anti-TM21) polyclonal antibody blocked the expression of CGEN-928 which decreased MM tumor cell proliferation and increased apoptosis in the MM cell lines MM1s, RPMI8226 and U266 as well as primary MM tumor cells. The mechanism through which blocking CGEN-928 decreases MM tumor cell proliferation and enhances apoptosis has not been elucidated clear. In this study, a CGEN-928 shRNA (lentiviral particles) was used to silence this gene's expression, and determine its impact on the AKT signal transduction pathway which has been shown to play an important role in MM tumor cell metabolism proliferation, and survival. Briefly, MM1s or primary MM tumor cells were cultured in a 12-well plate for 24 hours prior to the viral infection. On the following day, a mixture of 5ug/ml Polybrene and fresh medium were added to the cells. The CGEN-928 shRNA lentiviral particles were then added to the culture. While transducing cells, we treated a portion of the cells with a negative control through introduction of control shRNA lentiviral particles. To ensure we achieved a successful transduction, we also treated another portion of the cells with cop GFP control Lentiviral particles. We confirmed that 75% of MM cells were transduced based on GFP+ cell counts after 24 hours treatment. The day following the transduction, the cultured medium was removed and replaced with fresh medium without polybrene. Two days following transduction, we used fresh 10ug/ml puromycin-containing medium to select stable MM cells. We replaced the medium with fresh puromycin-containing medium every three days until resistant MM tumor cells were stable. Proliferation rate of the MM1s tumor cells transduced with CGEN-928 shRNA (85%) 24 hours was much lower than the tumor cells transduced with control lentiviral particles rate (170%). The proportion of MM cells undergoing apoptosis treated with CGEN-928 shRNA (42%) was higher than MM cells transduced with control lentiviral particles (13%). We next examined several protein phosphorylation sites related to AKT signaling pathway by Western blot. The results showed AKT1 phosphorylation in MM tumor cells transduced with CGEN-928 shRNA or anti- CGEN-928 polyclonal antibody was decreased and phosphorylation of c-Raf, GSK-3β, factors downstream of AKT were also down-regulated. PTEN phosphorylation slightly decreased in MM cell treated with anti-CGEN-928 antibody but did not change in MM cells silenced with CGEN-928 shRNA. We further examined downstream gene expression of the AKT pathway when CGEN-928 was silenced using siRNA or the anti-CGEN-928 TM-21 antibody. We found AKT1 gene expression was reduced in the presence of CGEN-928 siRNA or antibody but it did not impact ATK2 and AKT3. mTOR gene expression in MM tumor cells was decreased with exposure to CGEN-928 siRNA but anti-TM21 showed no effect. Cyclin D1 gene expression in MM tumor cell was not affected by CGEN-928 siRNA and antibody. These studies suggest that blockage of CGEN-928 antigen expression inhibits MM tumor cell proliferation and enhance tumor cell apoptosis through AKT signaling pathway. Currently, a monoclonal anti-CGEN-928 antibody is in development that will be used by our group to evaluate its anti-MM effects both in vitro and in vivo using our SCID-hu models of human MM. Disclosures: Berenson: Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding, Speakers Bureau; Onyx Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Medtronic: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck: Research Funding; Genentech: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document