scholarly journals Perfecting and extending the near-infrared imaging window

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhe Feng ◽  
Tao Tang ◽  
Tianxiang Wu ◽  
Xiaoming Yu ◽  
Yuhuang Zhang ◽  
...  

AbstractIn vivo fluorescence imaging in the second near-infrared window (NIR-II) has been considered as a promising technique for visualizing mammals. However, the definition of the NIR-II region and the mechanism accounting for the excellent performance still need to be perfected. Herein, we simulate the photon propagation in the NIR region (to 2340 nm), confirm the positive contribution of moderate light absorption by water in intravital imaging and perfect the NIR-II window as 900–1880 nm, where 1400–1500 and 1700–1880 nm are defined as NIR-IIx and NIR-IIc regions, respectively. Moreover, 2080–2340 nm is newly proposed as the third near-infrared (NIR-III) window, which is believed to provide the best imaging quality. The wide-field fluorescence microscopy in the brain is performed around the NIR-IIx region, with excellent optical sectioning strength and the largest imaging depth of intravital NIR-II fluorescence microscopy to date. We also propose 1400 nm long-pass detection in off-peak NIR-II imaging whose performance exceeds that of NIR-IIb imaging, using bright fluorophores with short emission wavelength.

2021 ◽  
Author(s):  
Zhe Feng ◽  
Tao Tang ◽  
Tianxiang Wu ◽  
Xiaoming Yu ◽  
Yuhuang Zhang ◽  
...  

In vivo fluorescence imaging in the second near-infrared window (NIR-II) has been considered as a promising technique for visualizing the mammals. However, the definition of the NIR-II region and the mechanism accounting for the excellent performance still need to be perfected. Herein, we simulated bioimaging in the NIR spectral range (to 2340 nm), confirmed the positive contribution of moderate light absorption by water in intravital imaging and perfected the NIR-II window as 900-1880 nm, where the 1400-1500 nm was defined as NIR-IIx region and the 1700-1880 nm was defined as NIR-IIc region, respectively. Moreover, the 2080-2340 nm was newly proposed as the third near-infrared (NIR-III) window, which was believed to provide the best imaging quality. The wide-field fluorescence microscopy in brain, in addition, was performed around NIR-IIx region with excellent optical sectioning strength and the largest imaging depth of in vivo NIR-II fluorescence microscopy to date. We also proposed 1400 nm long-pass detection in off-peak NIR-II imaging whose profits exceeded those of NIR-IIb imaging, using bright fluorophores with short peak emission wavelength.


Author(s):  
Anthony J. Durkin ◽  
Jae G. Kim ◽  
David J. Cuccia

We present a wide-field, near infrared spectral imaging modality called modulated imaging (MI) that shows great promise for quantitatively imaging superficial (1–5 mm depth) tissues. We have applied this method to a dorsal pedicle skin flap model to determine in-vivo local concentrations of oxy- and deoxy-hemoglobin and water.


2012 ◽  
Vol 51 (39) ◽  
pp. 9818-9821 ◽  
Author(s):  
Guosong Hong ◽  
Joshua T. Robinson ◽  
Yejun Zhang ◽  
Shuo Diao ◽  
Alexander L. Antaris ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


2018 ◽  
Author(s):  
Wei Chen ◽  
ChiAn Cheng ◽  
Emily Cosco ◽  
Shyam Ramakrishnan ◽  
Jakob Lingg ◽  
...  

Tissue is translucent to shortwave infrared (SWIR) light, rendering optical imaging superior in this region. However, the widespread use of optical SWIR imaging has been limited, in part, by the lack of bright, biocompatible contrast agents that absorb and emit light above 1000 nm. J-aggregation offers a means to transform stable, near-infrared (NIR) fluorophores into red-shifted SWIR contrast agents. Here we demonstrate that hollow mesoporous silica nanoparticles (HMSNs) can template the J-aggregation of NIR fluorophore IR-140 to result in nanomaterials that absorb and emit SWIR light. The J-aggregates inside PEGylated HMSNs are stable for multiple weeks in buffer and enable high resolution imaging <i>in vivo</i>with 980 nm excitation.


2019 ◽  
Author(s):  
Alena Rudkouskaya ◽  
Nattawut Sinsuebphon ◽  
Marien Ochoa ◽  
Joe E. Mazurkiewicz ◽  
Xavier Intes ◽  
...  

AbstractFollowing an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. To date, non-invasive quantitative imaging modalities that can comprehensively assess simultaneous cellular drug delivery efficacy and therapeutic response are lacking. In this regard, Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in vivo and subsequent intracellular internalization, which is critical to assess the delivery efficacy of targeted therapeutics. However, implementation of multiplexing optical imaging with FRET in vivo is challenging to achieve due to spectral crowding and cross-contamination. Herein, we report on a strategy that relies on a dark quencher that enables simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700) using in vitro NIR FLI microscopy and in vivo wide-field MFLI imaging. Second, we report on simultaneous in vivo imaging of the metabolic probe IRDye 800CW 2-deoxyglucose (2-DG) and MFLI-FRET imaging of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 212-212
Author(s):  
S. Khatri ◽  
J. Hansen ◽  
M. H. Clausen ◽  
T. W. Kragstrup ◽  
S. C. Hung ◽  
...  

Background:Rheumatoid arthritis (RA) is an immune mediated inflammatory disease with autoimmune features, including antibodies to citrullinated proteins and peptides (ACPAs). Several in vitro studies have suggested a pathogenic role of ACPAs in RA. However, in vivo proof of this concept has been hampered by the lack of therapeutic strategies to reduce or deplete ACPA in serum and synovial fluid. Previously, we constructed a chitosan-hyaluronic acid nanoparticle formulation with the ability to use neutrophil recruitment as a delivery mechanism to inflamed joints. Specifically, nanoparticles got phagocytosed and then released to synovial fluid upon death of the short-lived neutrophilsObjectives:We hypothesized that reducing ACPA levels would have a therapeutic effect by blocking cytokine production. In this study, we prepared and tested a series of therapeutic nanoparticles for specific targeting of ACPA in synovial fluid.Methods:Nanoparticles were prepared by the microdroplet method and then decorated with synthetic cyclic citrullinated peptide aptamer PEP2, PEG/hexanoic acid and fluorophore (Cy5.5). Nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC). Nanoparticles were then used in a series of in vitro assays, including cell uptake with flow cytometry (FACS) detection, and in vivo studies including disease activity scores, cytokine measurements and near-infrared imaging.Results:We screened a series of citrullinated peptide epitopes and identified a fibrinogen-derived 21-amino-acid-long citrullinated peptide showing high selectivity toward autoantibodies in RA samples. We incorporated this aptamer in the chitosan-hyaluronic acid nanoparticle formulation previously described. Average nanoparticle size was 230 nm ± 10 nm by DLS and SEM; z potential was -0.0012. Purity by HPLC was over 95%. Attachment efficiency of the aptamer was 92% by HPLC. FACS study showed selective uptake of Cy5.5 labelled aptamer-nanoparticle conjugates by neutrophils in the concentration range 0.5-4 nM. Similar to previous studies,1there was no apparent immunogenicity for this nanoparticle formulation measured by cytokine secretion from human peripheral blood leukocytes. In vivo, over 50% reduction of disease activity was achieved in three weeks treatment using as little as 1 nM drug candidate (dosed every 48 hours) in the collagen-induced (CIA) mouse model of RA (N=30; p<0.001 for treated vs placebo). Same was observed in the serum transfer model (N=10). The aptamer-nanoparticle conjugate significantly reduced IL-6 and TNFα levels in the mouse sera (p<0.01). The effects were not inferior to tocilizumab treated controls (N=30). To confirm mode of action, we applied Cy5.5-labelled aptamer-nanoparticles in the collagen-induced mouse model (N=10) and analyzed the resulting uptake by near-infrared imaging. We confirmed over 6-fold higher signal accumulation in inflamed vs healthy joints (p<0.01), which strongly supports the fact that the aptamer is highly specific to the inflammatory process.Conclusion:Overall, we have designed a first-in-class therapeutic nanoparticle drug for specific targeting of anti-citrullinated protein antibodies. The marked effect of this nanoparticle observed in vivo holds promise for targeting ACPAs as a therapeutic option in RA.References:[1]Khatri S, Hansen J, Mendes AC, Chronakis IS, Hung S-C, Mellins ED, Astakhova K. Bioconjug Chem. 2019 Oct 16;30(10):2584–259Disclosure of Interests:Sangita Khatri: None declared, Jonas Hansen: None declared, Mads Hartvig Clausen Shareholder of: iBio Tech ApS, Tue Wenzel Kragstrup Shareholder of: iBio Tech ApS, Consultant of: Bristol-Myers Squibb, Speakers bureau: TWK has engaged in educational activities talking about immunology in rheumatic diseases receiving speaking fees from Pfizer, Bristol-Myers Squibb, Eli Lilly, Novartis, and UCB., Shu-Chen Hung: None declared, Elisabeth Mellins: None declared, Kira Astakhova: None declared


Sign in / Sign up

Export Citation Format

Share Document