scholarly journals TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jia Hu ◽  
Xueliang Ding ◽  
Shaobo Tian ◽  
Yanan Chu ◽  
Zhibo Liu ◽  
...  

AbstractThe biological function of TRIM39, a member of TRIM family, remains largely unexplored in cancer, especially in colorectal cancer (CRC). In this study, we show that TRIM39 is upregulated in tumor tissues compared to adjacent normal tissues and associated with poor prognosis in CRC. Functional studies demonstrate that TRIM39 deficiency restrains CRC progression in vitro and in vivo. Our results further find that TRIM39 is a positive regulator of autophagosome–lysosome fusion. Mechanistically, TRIM39 interacts with Rab7 and promotes its activity via inhibiting its ubiquitination at lysine 191 residue. Depletion of TRIM39 inhibits CRC progression and autophagic flux in a Rab7 activity-dependent manner. Moreover, TRIM39 deficiency suppresses CRC progression through inhibiting autophagic degradation of p53. Thus, our findings uncover the roles as well as the relevant mechanisms of TRIM39 in CRC and establish a functional relationship between autophagy and CRC progression, which may provide promising approaches for the treatment of CRC.

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


2018 ◽  
Vol 51 (4) ◽  
pp. 1969-1981 ◽  
Author(s):  
Xiangyu Zhu ◽  
Si-ping Ma ◽  
Dongxiang Yang ◽  
Yanlong Liu ◽  
Yong-peng Wang ◽  
...  

Background/Aims: Deregulation of microRNAs (miRNAs) has been associated with a variety of cancers, including colorectal cancer (CRC). Here, we investigated anomalous miR-142-3p expression and its possible functional consequences in primary CRC samples. Methods: The expression of miR-142-3p was measured by quantitative RT-PCR in 116 primary CRC tissues and adjacent non-tumor tissues. The effect of miR-142-3p up- or down-regulation in CRC-derived cells was evaluated in vitro by cell viability and colony formation assays and in vivo by growth assays in xenografted nude mice. Results: Using quantitative RT-PCR, we found that miR-142-3p was down-regulated in 78.4 % (91/116) of the primary CRC tissues tested when compared to the adjacent non-tumor tissues. We also found that the miR-142-3p mimic reduced in vitro cell viability and colony formation by inducing cell cycle arrest in CRC-derived cells, and inhibited in vivo tumor cell growth in xenografted nude mice. Inversely, we found that the miR-142-3p inhibitor increased the viability and colony forming capacity of CRC-derived cells and tumor cell growth in xenografted nude mice. In addition, we identified CDK4 as a potential target of miR-142-3p by predictions and dual-luciferase reporter assays. Concordantly, we found that miR-142-3p mimics and inhibitors could decrease and increase CDK4 protein levels in CRC-derived cells, respectively. Conclusion: From our results we conclude that miR-142-3p may act as a tumor suppressor in CRC and may serve as a tool for miRNA-based CRC therapy.


2017 ◽  
Vol 8 (2) ◽  
pp. e2608-e2608 ◽  
Author(s):  
Hongfeng Yuan ◽  
Brandon Tan ◽  
Shou-Jiang Gao

Abstract Tenovin-6 has attracted significant interest because it activates p53 and inhibits sirtuins. It has anti-neoplastic effects on multiple hematopoietic malignancies and solid tumors in both in vitro and in vivo studies. Tenovin-6 was recently shown to impair the autophagy pathway in chronic lymphocytic leukemia cells and pediatric soft tissue sarcoma cells. However, whether tenovin-6 has a general inhibitory effect on autophagy and whether there is any involvement with SIRT1 and p53, both of which are regulators of the autophagy pathway, remain unclear. In this study, we have demonstrated that tenovin-6 increases microtubule-associated protein 1 light chain 3 (LC3-II) level in diverse cell types in a time- and dose-dependent manner. Mechanistically, the increase of LC3-II by tenovin-6 is caused by inhibition of the classical autophagy pathway via impairing lysosomal function without affecting the fusion between autophagosomes and lysosomes. Furthermore, we have revealed that tenovin-6 activation of p53 is cell type dependent, and tenovin-6 inhibition of autophagy is not dependent on its regulatory functions on p53 and SIRT1. Our results have shown that tenovin-6 is a potent autophagy inhibitor, and raised the precaution in interpreting results where tenovin-6 is used as an inhibitor of SIRT1.


Author(s):  
Song Wang ◽  
Zheng Liu ◽  
Yi-Ming Ma ◽  
Xu Guan ◽  
Zheng Jiang ◽  
...  

Abstract Background Some recent studies on insulin receptor tyrosine kinase substrate (IRTKS) have focused more on its functions in diseases. However, there is a lack of research on the role of IRTKS in carcinomas and its mechanism remains ambiguous. In this study, we aimed to clarify the role and mechanism of IRTKS in the carcinogenesis of colorectal cancer (CRC). Methods We analysed the expression of IRTKS in CRC tissues and normal tissues by researching public databases. Cancer tissues and adjacent tissues of 67 CRC patients who had undergone radical resection were collected from our center. Quantitative real-time polymerase chain reaction and immunohistochemistry were performed in 52 and 15 pairs of samples, respectively. In vitro and in vivo experiments were conducted to observe the effect of IRTKS on CRC cells. Gene Set Enrichment Analysis and Metascape platforms were used for functional annotation and enrichment analysis. We detected the protein kinase B (AKT) phosphorylation and cell viability of SW480 transfected with small interfering RNAs (siRNAs) with or without basic fibroblast growth factor (bFGF) through immunoblotting and proliferation assays. Results The expression of IRTKS in CRC tissues was higher than that in adjacent tissues and normal tissues (all P < 0.05). Disease-free survival of patients with high expression was shorter. Overexpression of IRTKS significantly increased the proliferation rate of CRC cells in vitro and the number of tumor xenografts in vivo. The phosphorylation level of AKT in CRC cells transfected with pLVX-IRTKS was higher than that in the control group. Furthermore, siRNA-IRTKS significantly decreased the proliferation rate of tumor cells and the phosphorylation level of AKT induced by bFGF. Conclusion IRTKS mediated the bFGF-induced cell proliferation through the phosphorylation of AKT in CRC cells, which may contribute to tumorigenicity in vivo.


2020 ◽  
Vol 21 (16) ◽  
pp. 5815
Author(s):  
Hongqing Xie ◽  
Xiaotong Li ◽  
Weiwei Yang ◽  
Liping Yu ◽  
Xiasen Jiang ◽  
...  

Gastric cancer is the most common malignant tumor of the digestive tract and is great challenge in clinical treatment. N6-(2-Hydroxyethyl)-adenosine (HEA), widely present in various fungi, is a natural adenosine derivative with many biological and pharmacological activities. Here, we assessed the antineoplastic effect of HEA on gastric carcinoma. HEA exerted cytotoxic effects against gastric carcinoma cells (SGC-7901 and AGS) in a dose and time-dependent manner. Additionally, we found that HEA induced reactive oxygen species production and mitochondrial membrane potential depolarization. Moreover, it could trigger caspase-dependent apoptosis, promoting intracellular Ca2+-related endoplasmic reticulum (ER) stress and autophagy. On the other hand, HEA could significantly inhibit the growth of transplanted tumors in nude mice and induce apoptosis of tumor tissues cells in vivo. In conclusion, HEA induced apoptosis of gastric carcinoma cells in vitro and in vivo, demonstrating that HEA is a potential chemotherapeutic agent for gastric carcinoma.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1523 ◽  
Author(s):  
Yuanyuan Fu ◽  
Qianqian Gu ◽  
Li Luo ◽  
Jiecheng Xu ◽  
Yuping Luo ◽  
...  

Autophagy inhibition has been proposed to be a potential therapeutic strategy for cancer, however, few autophagy inhibitors have been developed. Recent studies have indicated that lysosome and autophagy related 4B cysteine peptidase (ATG4B) are two promising targets in autophagy for cancer therapy. Although some inhibitors of either lysosome or ATG4B were reported, there are limitations in the use of these single target compounds. Considering multi-functional drugs have advantages, such as high efficacy and low toxicity, we first screened and validated a batch of compounds designed and synthesized in our laboratory by combining the screening method of ATG4B inhibitors and the identification method of lysosome inhibitors. ATG4B activity was effectively inhibited in vitro. Moreover, 163N inhibited autophagic flux and caused the accumulation of autolysosomes. Further studies demonstrated that 163N could not affect the autophagosome-lysosome fusion but could cause lysosome dysfunction. In addition, 163N diminished tumor cell viability and impaired the development of colorectal cancer in vivo. The current study findings indicate that the dual effect inhibitor 163N offers an attractive new anti-cancer drug and compounds having a combination of lysosome inhibition and ATG4B inhibition are a promising therapeutic strategy for colorectal cancer therapy.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun Wang ◽  
Jia-Huan Lu ◽  
Qi-Nian Wu ◽  
Ying Jin ◽  
De-Shen Wang ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play nonnegligible roles in the epigenetic regulation of cancer cells. This study aimed to identify a specific lncRNA that promotes the colorectal cancer (CRC) progression and could be a potential therapeutic target. Methods We screened highly expressed lncRNAs in human CRC samples compared with their matched adjacent normal tissues. The proteins that interact with LINRIS (Long Intergenic Noncoding RNA for IGF2BP2 Stability) were confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assays. The proliferation and metabolic alteration of CRC cells with LINRIS inhibited were tested in vitro and in vivo. Results LINRIS was upregulated in CRC tissues from patients with poor overall survival (OS), and LINRIS inhibition led to the impaired CRC cell line growth. Moreover, knockdown of LINRIS resulted in a decreased level of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), a newly found N6-methyladenosine (m6A) ‘reader’. LINRIS blocked K139 ubiquitination of IGF2BP2, maintaining its stability. This process prevented the degradation of IGF2BP2 through the autophagy-lysosome pathway (ALP). Therefore, knockdown of LINRIS attenuated the downstream effects of IGF2BP2, especially MYC-mediated glycolysis in CRC cells. In addition, the transcription of LINRIS could be inhibited by GATA3 in CRC cells. In vivo experiments showed that the inhibition of LINRIS suppressed the proliferation of tumors in orthotopic models and in patient-derived xenograft (PDX) models. Conclusion LINRIS is an independent prognostic biomarker for CRC. The LINRIS-IGF2BP2-MYC axis promotes the progression of CRC and is a promising therapeutic target.


2014 ◽  
Vol 306 (12) ◽  
pp. E1431-E1441 ◽  
Author(s):  
Hejun Zhao ◽  
Rui Wei ◽  
Liang Wang ◽  
Qing Tian ◽  
Ming Tao ◽  
...  

Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.


2005 ◽  
Vol 168 (3) ◽  
pp. 401-414 ◽  
Author(s):  
Tracy J. LaGrassa ◽  
Christian Ungermann

The regulation of cellular membrane flux is poorly understood. Yeast respond to hypertonic stress by fragmentation of the normally large, low copy vacuole. We used this phenomenon as the basis for an in vivo screen to identify regulators of vacuole membrane dynamics. We report here that maintenance of the fragmented phenotype requires the vacuolar casein kinase I Yck3: when Yck3 is absent, salt-stressed vacuoles undergo fission, but reassemble in a SNARE-dependent manner, suggesting that vacuole fusion is disregulated. Accordingly, when Yck3 is deleted, in vitro vacuole fusion is increased, and Yck3 overexpression blocks fusion. Morphological and functional studies show that Yck3 modulates the Rab/homotypic fusion and vacuole protein sorting complex (HOPS)-dependent tethering stage of vacuole fusion. Intriguingly, Yck3 mediates phosphorylation of the HOPS subunit Vps41, a bi-functional protein involved in both budding and fusion during vacuole biogenesis. Because Yck3 also promotes efficient vacuole inheritance, we propose that tethering complex phosphorylation is a part of a general, switch-like mechanism for driving changes in organelle architecture.


Sign in / Sign up

Export Citation Format

Share Document