scholarly journals JWA suppresses proliferation in trastuzumab-resistant breast cancer by downregulating CDK12

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Liang ◽  
Chao Qian ◽  
Yinghong Xie ◽  
Xiang Huang ◽  
Junjie Chen ◽  
...  

AbstractBreast cancer is the most common cancer worldwide. JWA is a microtubule-associated protein that has been identified as a tumor suppressor, and its downregulation in tumors is an independent adverse prognostic factor. The objective of this study was to explore the expression, regulation, and mechanism of JWA in trastuzumab-resistant breast cancers. In this study, we found that JWA expression was lower in trastuzumab-resistant breast cancers than that in trastuzumab-sensitive breast cancers. Furthermore, it was confirmed that overexpression of JWA inhibited proliferation and promoted apoptosis in trastuzumab-resistant breast cancers both in vitro and in vivo. In addition, the low expression of JWA in trastuzumab-resistant breast cancers is associated with a poor prognosis. Combining RNA-sequence datasets and next-generation sequencing, it was found that JWA negatively regulated CDK12, and was involved in the G1-to-S transition of the cell cycle. It has been reported that CDK12 drives breast cancer initiation and induces trastuzumab resistance. Taken together, high expression of JWA could inhibit the growth of trastuzumab-resistant breast cancer, and JWA is a potential predictive marker for trastuzumab resistance. In addition, targeted therapy with JWA may be a novel therapeutic strategy to improve the survival rate of trastuzumab-resistant breast cancer.

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1918
Author(s):  
Yanyuan Wu ◽  
Marianna Sarkissyan ◽  
Ochanya Ogah ◽  
Juri Kim ◽  
Jaydutt V. Vadgama

Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is associated with cancer progression. Our study examined the role of MALAT1 in breast cancer and the mechanisms involved in the regulation of MALAT1. Methods: In vitro cell and in vivo animal models were used to examine the role of MALAT1 in breast cancer. The interaction of FOXO1 (Forkhead Box O1) at the promoter region of MALAT1 was investigated by chromatin immunoprecipitation (ChIP) assay. Results: The data shows an elevated expression of MALAT1 in breast cancer tissues and cells compared to non-cancer tissues and cells. The highest level of MALAT1 was observed in metastatic triple-negative breast cancer and trastuzumab-resistant HER2 (human epidermal growth factor receptor 2) overexpressing (HER2+) cells. Knockdown of MALAT1 in trastuzumab-resistant HER2+ cells reversed epithelial to mesenchymal transition-like phenotype and cell invasiveness. It improved the sensitivity of the cell’s response to trastuzumab. Furthermore, activation of Akt by phosphorylation was associated with the upregulation of MALAT1. The transcription factor FOXO1 regulates the expression of MALAT1 via the PI3/Akt pathway. Conclusions: We show that MALAT1 contributes to HER2+ cell resistance to trastuzumab. Targeting the PI3/Akt pathway and stabilizing FOXO1 translocation could inhibit the upregulation of MALAT1.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
C Zabkiewicz ◽  
L Ye ◽  
R Hargest

Abstract Introduction HER2 over-expression denotes poor prognosis in breast cancers.Bone morphogenetic protein(BMP) signalling is known to interact with EGF signalling, co-regulating breast cancer progression.BMP antagonist Gremlin-1 may influence breast cancer disease progression, but this remains unexplored in HER2 positive breast cancers. Method GREM1 and HER2 expression, and clinical outcomes were examined in clinical cohorts.GREM1 overexpression or pEF control plasmid were transduced into BT474 HER2+breast cancer cells. In vitro function tests using BT474 pEF and BT474GREM1cells include 2D/3D growth, migration, and expression of epithelial to mesenchymal transition(EMT)markers. Signalling cascades were examined in BT474 treated with RhGremlin-1. In vivo, BALB/c nude mice underwent either mammary injection or intra-cardiac injection of BT474pEF or BT474GREM1 cells and disease burden assessed. Result GREM1 expression correlates with HER2 in breast tumours(p=0.03) and is higher in metastatic HER2 positive cancers (p = 0.04). HER2 positive patients with high GREM1 have poor survival(p = 0.0002). BT474GREM1cells have up-regulated markers of EMT compared to control. BT474 RhGremlin-1 treated cells have active AKT pathway signalling, independent of BMP signalling. In vitro,  BT474GREM1cells significantly proliferate and migrate compared to control(p<0.05 and p < 0.001).This is confirmed in vivo,  BT474GREM1 mice grew significantly larger mammary tumours(p<0.05) and had more PETCT metastatic hotspots. Conclusion Gremlin-1 is correlated with poor outcomes in HER2 patients and promotes breast cancer cellular growth, migration and metastasis.Gremlin-1 is a novel area of research with potential as a prognostic biomarker and therapeutic target for personalised, effective, breast cancer outcomes. Take-home message BMP antagonists are gaining interest for their potential in breast cancer prognosis and therapeutics.This novel area of research shows BMP antagonist Gremlin-1 is of importance in HER2 positive breast cancers. DRAGONS DEN


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Hussein Sabit ◽  
Shaimaa Abdel-Ghany ◽  
Huseyin Tombuloglu ◽  
Emre Cevik ◽  
Amany Alqosaibi ◽  
...  

AbstractCRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.


Author(s):  
Noha Gwili ◽  
Stacey J. Jones ◽  
Waleed Al Amri ◽  
Ian M. Carr ◽  
Sarah Harris ◽  
...  

Abstract Background Breast cancer stem cells (BCSCs) are drivers of therapy-resistance, therefore are responsible for poor survival. Molecular signatures of BCSCs from primary cancers remain undefined. Here, we identify the consistent transcriptome of primary BCSCs shared across breast cancer subtypes, and we examine the clinical relevance of ITGA7, one of the genes differentially expressed in BCSCs. Methods Primary BCSCs were assessed using immunohistochemistry and fluorescently labelled using Aldefluor (n = 17). Transcriptomes of fluorescently sorted BCSCs and matched non-stem cancer cells were determined using RNA-seq (n = 6). ITGA7 expression was examined in breast cancers using immunohistochemistry (n = 305), and its functional role was tested using siRNA in breast cancer cells. Results Proportions of BCSCs varied from 0 to 9.4%. 38 genes were significantly differentially expressed in BCSCs; genes were enriched for functions in vessel morphogenesis, motility, and metabolism. ITGA7 was found to be significantly downregulated in BCSCs, and low expression significantly correlated with reduced survival in patients treated with chemotherapy, and with chemoresistance in breast cancer cells in vitro. Conclusions This study is the first to define the molecular profile of BCSCs from a range of primary breast cancers. ITGA7 acts as a predictive marker for chemotherapy response, in accordance with its downregulation in BCSCs.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 804 ◽  
Author(s):  
Ying-Jie Hu ◽  
Jing-Ying Zhang ◽  
Qian Luo ◽  
Jia-Rui Xu ◽  
Yan Yan ◽  
...  

The heterogeneity of breast cancer and the development of drug resistance are the relapse reasons of disease after chemotherapy. To address this issue, a combined therapeutic strategy was developed by building the nanostructured dihydroartemisinin plus epirubicin liposomes. Investigations were performed on human breast cancer cells in vitro and xenografts in nude mice. The results indicated that dihydroartemisinin could significantly enhance the efficacy of epirubicin in killing different breast cancer cells in vitro and in vivo. We found that the combined use of dihydroartemisinin with epirubicin could efficiently inhibit the activity of Bcl-2, facilitate release of Beclin 1, and further activate Bax. Besides, Bax activated apoptosis which led to the type I programmed death of breast cancer cells while Beclin 1 initiated the excessive autophagy that resulted in the type II programmed death of breast cancer cells. In addition, the nanostructured dihydroartemisinin plus epirubicin liposomes prolonged circulation of drugs, and were beneficial for simultaneously delivering drugs into breast cancer tissues. Hence, the nanostructured dihydroartemisinin plus epirubicin liposomes could provide a new therapeutic strategy for treatment of breast cancer.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15047-e15047
Author(s):  
Surender Kharbanda ◽  
Anees Mohammad ◽  
Sachchidanand Tiwari ◽  
Neha Mehrotra ◽  
Sireesh Appajosyula ◽  
...  

e15047 Background: Triple negative breast cancer (TNBC) accounts for about 10-15% of all breast cancers and differ from other types of invasive breast cancers in that they grow and spread faster. TNBCs have limited treatment options and a worse prognosis. Therapy with anthracyclines considered to be one of the most effective agents in the treatment. Unfortunately, resistance to anthracycline therapy is very common due to drug efflux mediated by overexpression of ABC transporter. Pirarubicin (PIRA), an analogue of doxorubicin (DOX), is approved in Japan, Korea and China and is shown to be less cardiotoxic than DOX. Recent studies suggest that cancer stem cells (CSCs) play an important role in tumorigenesis and biology of TNBC. Targeting CSCs may be a promising, novel strategy for the treatment of this aggressive disease. Recent studies have shown that salinomycin (SAL) preferentially targets the viability of CSCs. Methods: SAL and PIRA were co-encapsulated in polylactic acid (PLA)-based block copolymeric nanoparticles (NPs) to efficiently co-deliver these agents to treat TNBC cells. Results: Generated SAL-PIRA co-encapsulated dual drug-loaded NPs showed an average diameter of 110 ± 7 nm, zeta potential of -12.5 mV and PDI of less than 0.25. Both of these anti-cancer agents showed slow and sustained release profile in non-physiological buffer (PBS, pH 7.4) from these dual drug-encapsulated NPs. Additionally, multiple ratios (PIRA:SAL = 3:1, 1:1, 1:3) were encapsulated to generate diverse dual drug-loaded NPs. The results demonstrate that, in contrast to 1:1 and 3:1, treatment of TNBC cells with 1:3 ratio of PIRA:SAL dual drug-loaded NPs, was associated with significant inhibition of growth in vitro in multiple TNBC cell lines. Interestingly, PIRA:SAL (1:3) was synergistic as compared to either SAL- or PIRA single drug-loaded NPs. The IC50 of PIRA and SAL in single drug-encapsulated NPs is 150 nM and 700 nM respectively in MDA-MB-468. Importantly, the IC50 of PIRA in dual drug-encapsulated NPs dropped down to 30 nM (5-fold). Similar results were obtained in SUM-149 TNBC cell line. Studies are underway to evaluate in vivo biological activity of PIRA:SAL (1:3) on tumor growth in a TNBC xenograft mice model. Conclusions: These results demonstrate that a novel dual drug-loaded NP formulation of PIRA and SAL in a unique ratio of 1:3 represents an approach for successful targeting of CSCs and bulk tumor cells in TNBC and potentially other cancer types.


2017 ◽  
Vol 24 (9) ◽  
pp. T47-T64 ◽  
Author(s):  
Angela Ogden ◽  
Padmashree C G Rida ◽  
Ritu Aneja

The multifaceted involvement of centrosome amplification (CA) in tumorigenesis is coming into focus following years of meticulous experimentation, which have elucidated the powerful abilities of CA to promote cellular invasion, disrupt stem cell division, drive chromosomal instability (CIN) and perturb tissue architecture, activities that can accelerate tumor progression. Integration of the extantin vitro,in vivoand clinical data suggests that in some tissues CA may be a tumor-initiating event, in others a consequential ‘hit’ in multistep tumorigenesis, and in some others, non-tumorigenic. However,in vivodata are limited and primarily focus on PLK4 (which has CA-independent mechanisms by which it promotes aggressive cellular phenotypes).In vitrobreast cancer models suggest that CA can promote tumorigenesis in breast cancer cells in the setting of p53 loss or mutation, which can both trigger CA and promote cellular tolerance to its tendency to slow proliferation and induce aneuploidy. It is thus our perspective that CA is likely an early hit in multistep breast tumorigenesis that may sometimes be lost to preserve aggressive karyotypes acquired through centrosome clustering-mediated CIN, both numerical and structural. We also envision that the robust link between p53 and CA may underlie, to a considerable degree, racial health disparity in breast cancer outcomes. This question is clinically significant because, if it is true, then analysis of centrosomal profiles and administration of centrosome declustering drugs could prove highly efficacious in risk stratifying breast cancers and treating African American (AA) women with breast cancer.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Lili Jiang ◽  
Liangliang Ren ◽  
Han Chen ◽  
Jinyuan Pan ◽  
Zhuojun Zhang ◽  
...  

AbstractHER2+ breast cancer (BC) is characterized by rapid growth, early recurrence, early metastasis, and chemoresistance. Trastuzumab is the most effective treatment for HER2+ BC and effectively reduces the risk of recurrence and death of patients. Resistance to trastuzumab results in cancer recurrence and metastasis, leading to poor prognosis of HER2+ BC. In the present study, we found that non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG) expression was highly upregulated in trastuzumab-resistant HER2+ BC. Ectopic NCAPG was positively correlated with tumor relapse and shorter survival in HER2+ BC patients. Moreover, overexpression of NCAPG promoted, while silencing of NCAPG reduced, the proliferative and anti-apoptotic capacity of HER2+ BC cells both in vitro and in vivo, indicating NCAPG reduces the sensitivity of HER2+ BC cells to trastuzumab and may confer trastuzumab resistance. Furthermore, our results suggest that NCAPG triggers a series of biological cascades by phosphorylating SRC and enhancing nuclear localization and activation of STAT3. To summarize, our study explores a crucial role for NCAPG in trastuzumab resistance and its underlying mechanisms in HER2+ BC, and suggests that NCAPG could be both a potential prognostic marker as well as a therapeutic target to effectively overcome trastuzumab resistance.


2019 ◽  
Vol 11 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Rajagopal Kalirajan ◽  
Arumugasamy Pandiselvi ◽  
Byran Gowramma ◽  
Pandiyan Balachandran

Background: Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. Objective: Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. Methods: Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. Results: Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. Conclusion: The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document