scholarly journals A short hepatitis C virus NS5A peptide expression by AAV vector modulates human T cell activation and reduces vector immunogenicity

Gene Therapy ◽  
2021 ◽  
Author(s):  
Winston Colon-Moran ◽  
Alan Baer ◽  
Gauri Lamture ◽  
Jack T. Stapleton ◽  
Joseph W. Fischer ◽  
...  

AbstractViral vector-mediated gene therapies have the potential to treat many human diseases; however, host immune responses against the vector and/or the transgene pose a safety risk to the patients and can negatively impact product efficacy. Thus, novel strategies to reduce vector immunogenicity are critical for the advancement of these therapies. T cell activation (TCA) is required for the development of immune responses during gene therapy. We hypothesized that modulation of TCA by incorporating a novel viral immunomodulatory factor into a viral vector may reduce unwanted TCA and immune responses during gene therapy. To test this hypothesis, we identified an immunomodulatory domain of the hepatitis C virus (HCV) NS protein 5A (NS5A) protein and studied the effect of viral vectors expressing NS5A peptide on TCA. Lentiviral vector-mediated expression of a short 20-mer peptide derived from the NS5A protein in human T cells was sufficient to inhibit TCA. Synthetic 20-mer NS5A peptide also inhibited TCA in primary human T cells. Mechanistically, the NS5A protein interacted with Lck and inhibited proximal TCR signaling. Importantly, NS5A peptide expression did not cause global T cell signaling dysfunction as distal T cell signaling was not inhibited. Finally, recombinant adeno-associated virus (AAV) vector expressing the 20-mer NS5A peptide reduced both the recall antigen and the TCR-mediated activation of human T cells and did not cause global T cell signaling dysfunction. Together, these data suggest that expression of a 20-mer NS5A peptide by an AAV vector may reduce unwanted TCA and may contribute to lower vector immunogenicity during gene therapy.

2001 ◽  
Vol 75 (23) ◽  
pp. 11298-11306 ◽  
Author(s):  
Pavel Bostik ◽  
Peggy Wu ◽  
Geraldine L. Dodd ◽  
Francois Villinger ◽  
Ann E. Mayne ◽  
...  

ABSTRACT Human immunodeficiency virus infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM) leads to a generalized loss of immune responses involving perturbations in T-cell receptor (TCR) signaling. In contrast, naturally SIV-infected sooty mangabeys (SM) remain asymptomatic and retain immune responses despite relatively high viral loads. However, SIV infection in both RM and SM led to similar decreases in TCR-induced Lck phosphorylation. In this study, a protein tyrosine kinase (PTK) differential display method was utilized to characterize the effects of in vivo SIV infection on key signaling molecules of the CD4+ T-cell signaling pathways. The CD4+ T cells from SIV-infected RM, but not SIV-infected SM, showed chronic downregulation of baseline expression of MLK3, PRK, and GSK3, and symptomatically SIV-infected RM showed similar downregulation of MKK3. In vitro TCR stimulation with or without CD28 costimulation of CD4+ T cells did not lead to the enhancement of gene transcription of these PTKs. While the CD4+ T cells from SIV-infected RM showed a significant increase of the baseline and anti-TCR-mediated ROR2 transcription, SIV infection in SM led to substantially decreased anti-TCR-stimulated ROR2 transcription. TCR stimulation of CD4+ T cells from SIV-infected RM (but not SIV-infected SM) led to the repression of CaMKKβ and the induction of gene transcription of MLK2. Studies of the function of these molecules in T-cell signaling may lead to the identification of potential targets for specific intervention, leading to the restoration of T-cell responses.


2003 ◽  
Vol 171 (10) ◽  
pp. 5225-5232 ◽  
Author(s):  
Virginie Lafont ◽  
Séverine Loisel ◽  
Janny Liautard ◽  
Sherri Dudal ◽  
Magali Sablé-teychené ◽  
...  

2021 ◽  
Author(s):  
Morteza Aramesh ◽  
Diana Stoycheva ◽  
Ioana Sandu ◽  
Stephan J. Ihle ◽  
Tamara Zund ◽  
...  

T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanisms by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation, and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200 nm pores, but not in 400 nm pores. Consequently, formation of TCR nanoclustered hotspots within 200 nm pores, allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1433 ◽  
Author(s):  
Chuang ◽  
Tan

T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.


2020 ◽  
Vol 295 (8) ◽  
pp. 2239-2247 ◽  
Author(s):  
Jeoung-Eun Park ◽  
David D. Brand ◽  
Edward F. Rosloniec ◽  
Ae-Kyung Yi ◽  
John M. Stuart ◽  
...  

Multiple observations implicate T-cell dysregulation as a central event in the pathogenesis of rheumatoid arthritis. Here, we investigated mechanisms for suppressing T-cell activation via the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1). To determine how LAIR-1 affects T-cell receptor (TCR) signaling, we compared 1) T cells from LAIR-1–sufficient and –deficient mice, 2) Jurkat cells expressing either LAIR-1 mutants or C-terminal Src kinase (CSK) mutants, and 3) T cells from mice that contain a CSK transgene susceptible to chemical inhibition. Our results indicated that LAIR-1 engagement by collagen or by complement C1q (C1Q, which contains a collagen-like domain) inhibits TCR signaling by decreasing the phosphorylation of key components in the canonical T-cell signaling pathway, including LCK proto-oncogene SRC family tyrosine kinase (LCK), LYN proto-oncogene SRC family tyrosine kinase (LYN), ζ chain of T-cell receptor–associated protein kinase 70 (ZAP-70), and three mitogen-activated protein kinases (extracellular signal–regulated kinase, c-Jun N-terminal kinase 1/2, and p38). The intracellular region of LAIR-1 contains two immunoreceptor tyrosine-based inhibition motifs that are both phosphorylated by LAIR-1 activation, and immunoprecipitation experiments revealed that Tyr-251 in LAIR-1 binds CSK. Using CRISPR/Cas9-mediated genome editing, we demonstrate that CSK is essential for the LAIR-1–induced inhibition of the human TCR signal transduction. T cells from mice that expressed a PP1 analog–sensitive form of CSK (CskAS) corroborated these findings, and we also found that Tyr-251 is critical for LAIR-1's inhibitory function. We propose that LAIR-1 activation may be a strategy for controlling inflammation and may offer a potential therapeutic approach for managing autoimmune diseases.


2007 ◽  
Vol 292 (4) ◽  
pp. R1465-R1471 ◽  
Author(s):  
Suzue Hirano ◽  
Daisuke Furutama ◽  
Toshiaki Hanafusa

Estrogen has diverse effects on inflammation and immune responses. That pregnancy is associated with remission of some autoimmune diseases and exacerbation of others suggests that physiological fluctuation in estrogen levels could affect the immune responses in humans. However, the molecular basis for these phenomena is poorly understood. We hypothesized that fluctuations of estrogen levels modulate intracellular signaling for immune responses via estrogen receptors (ERs). In reporter assays, 17β-estradiol (E2) at a physiologically high concentration increased the activity of NF-κB in Jurkat cells stimulated by PMA/ionomycin or TNF-α. Overexpression and RNA interference experiments suggested that the effects were mediated through ERβ. Immunoprecipitation assay showed that both ERα and ERβ are directly associated with NF-κB in the cell nucleus. Using chromatin immunoprecipitation assay, we confirmed that ERα and ERβ associated with NF-κB and steroid hormone coactivators at the promoter region of NF-κB regulated gene. Considering that NF-κB regulates the expression of various genes essential for cell growth and death, estrogen could regulate the fate of T cells by affecting the activity of NF-κB. To determine whether E2 alters the fate of T cells, we investigated E2 actions on T cell apoptosis, a well-known NF-κB-mediated phenomenon. E2 increased apoptosis of Jurkat cells and decreased that of human peripheral blood T cells. Our results indicate that E2 at a physiologically high concentration modulates NF-κB signaling in human T cells via ERβ and affects T cell survival, suggesting that these actions may underlie the gender differences in autoimmune diseases.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3580-3580
Author(s):  
Shoba Amarnath ◽  
James CM Wang ◽  
Paul R. Massey ◽  
James L. Riley ◽  
Bruce Levine ◽  
...  

Abstract Abstract 3580 Poster Board III-517 Immune cell expression of programmed death ligand-1 (PD-L1) represents a particularly important molecular mechanism responsible for control of auto- and allo-immunity mediated by effector memory T cells expressing PD1 receptor. As such, we have reasoned that an immuno-gene therapy approach that enables T cell expression of PD-L1 will represent a novel method of immune regulation. Advantageous features of this proposed therapy include a capacity to: (1) enforce long-term, stable expression of PD-L1; (2) build-in an independent surface marker to allow specific transduced cell enrichment; (3) utilize cellular delivery vehicles comprised of highly functional T cells that persist in vivo after adoptive transfer; and (4) incorporate an enhanced cell fate control or ‘suicide’ gene to permit in vivo control of the immuno-gene therapy. Given these considerations, we developed a recombinant lentiviral vector (LV) incorporating an EF1-α promoter that first encodes the cDNA for a fusion protein consisting of human CD19 (truncated, non-signaling) combined with mutated human TMPK that efficiently activates AZT as a pro-drug (Sato et al; Mol Therapy, 2007); then, after an IRES element, the vector encodes full-length human PD-L1. LV was made after transfection of 293T cells and then concentrated and titered. Initial experiments used Jurkat cells to optimize virus infection and to confirm co-expression of CD19 and PD-L1 by flow cytometry. In previous work, we have demonstrated that ex vivo T cell expansion in rapamycin induces an anti-apoptotic phenotype that permits enhanced in vivo T cell persistence in murine models and human-into-mouse xenogeneic transplant models. As such, we established the goal of infecting primary human CD4+ T cells manufactured using ex vivo co-stimulation (anti-CD3, anti-CD28), Th1-type polarization (inclusion of IFN-α), and exposure to high-dose rapamycin (1 μM); using a 6-day culture system and subsequent anti-CD19 column purification, >90% of resultant transduced T cells expressed PD-L1. Next, we utilized a xenogeneic transplantation model (Rag2−/−γc−/− hosts) to assess in vivo persistence of the gene-modified T cells and transgene expression (10,000 T cells transferred i.v. into each host). In vivo experiment #1 demonstrated that recipients of gene-modified T cells had increased numbers of human T cells in the spleen that co-expressed CD19 and PD-L1 relative to recipients of non-transduced but identically expanded human T cells (harvested at day 5 after adoptive transfer; 38,000 cells/spleen vs. 1000 cells/spleen, p=0.02). Such in vivo harvested T cells were secondarily co-stimulated ex vivo and propagated for an additional 5 days: co-expression of CD19 and PD-L1 persisted in ∼ 50% of T cells harvested from the gene-modified T cell cohort, and T cell numbers were maintained ex vivo (yield of CD19+PD-L1+ cells, 28,600 vs. 1500; p=0.0001). In vivo experiment #2 confirmed and extended these results. At day 21 after adoptive transfer, recipients of gene-modified T cells had increased numbers of human T cells that co-expressed CD19 and PD-L1 relative to recipients of non-transduced but identically expanded human T cells in both the spleen (2800 cells/spleen vs. 390 cells/spleen, p=0.01; n=10 per cohort) and bone marrow (71,600 cells/marrow vs. 6500 cells/marrow, p=0.0001; n=10 per cohort). Such in vivo harvested T cells at day 21 after adoptive transfer were secondarily co-stimulated ex vivo and propagated for an additional 6 days: co-expression of CD19 and PD-L1 persisted in ∼ 50% of T cells harvested from the gene-modified T cell cohort, and T cell numbers were maintained ex vivo (yield of CD19+PD-L1+ cells harvested from spleen, 71,200 vs. 1800, p=0.0008; yield of CD19+PD-L1+ cells harvested from marrow, 226,000 vs. 1400, p=0.0001). Because the rapamycin-resistant T cell vehicle utilized in these experiments manifests an anti-apoptotic phenotype that confers long-term engraftment potential, it is likely that the demonstrated durability in transgene expression relates both to the efficiency of the LV method utilized and to a T cell pro-survival function. In conclusion, the LV-mediated transfer of this novel combination of CD19/TMPK fusion protein and PD-L1 results in stable transgene expression in primary human T cells in vitro and in vivo, thereby opening an avenue to assess PD-L1 mediated immuno-gene therapy under cell fate control. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document