scholarly journals Distinct transcriptional roles for Histone H3-K56 acetylation during the cell cycle in Yeast

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Salih Topal ◽  
Pauline Vasseur ◽  
Marta Radman-Livaja ◽  
Craig L. Peterson

Abstract Dynamic disruption and reassembly of promoter-proximal nucleosomes is a conserved hallmark of transcriptionally active chromatin. Histone H3-K56 acetylation (H3K56Ac) enhances these turnover events and promotes nucleosome assembly during S phase. Here we sequence nascent transcripts to investigate the impact of H3K56Ac on transcription throughout the yeast cell cycle. We find that H3K56Ac is a genome-wide activator of transcription. While H3K56Ac has a major impact on transcription initiation, it also appears to promote elongation and/or termination. In contrast, H3K56Ac represses promiscuous transcription that occurs immediately following replication fork passage, in this case by promoting efficient nucleosome assembly. We also detect a stepwise increase in transcription as cells transit S phase and enter G2, but this response to increased gene dosage does not require H3K56Ac. Thus, a single histone mark can exert both positive and negative impacts on transcription that are coupled to different cell cycle events.

1993 ◽  
Vol 13 (3) ◽  
pp. 1610-1618 ◽  
Author(s):  
J E Slansky ◽  
Y Li ◽  
W G Kaelin ◽  
P J Farnham

Enhanced expression of genes involved in nucleotide biosynthesis, such as dihydrofolate reductase (DHFR), is a hallmark of entrance into the DNA synthesis (S) phase of the mammalian cell cycle. To investigate the regulated expression of the DHFR gene, we stimulated serum-starved NIH 3T3 cells to synchronously reenter the cell cycle. Our previous results show that a cis-acting element at the site of DHFR transcription initiation is necessary for serum regulation. Recently, this element has been demonstrated to bind the cloned transcription factor E2F. In this study, we focused on the role of E2F in the growth regulation of DHFR. We demonstrated that a single E2F site, in the absence or presence of other promoter elements, was sufficient for growth-regulated promoter activity. Next, we showed that the increase in DHFR mRNA at the G1/S-phase boundary required protein synthesis, raising the possibility that a protein(s) lacking in serum-starved cells is required for DHFR transcription. We found that, similar to DHFR mRNA expression, levels of murine E2F1 mRNA were low in serum-starved cells and increased at the G1/S-phase boundary in a protein synthesis-dependent manner. Furthermore, in a cotransfection experiment, expression of human E2F1 stimulated the DHFR promoter 22-fold in serum-starved cells. We suggest that E2F1 may be the key protein required for DHFR transcription that is absent in serum-starved cells. Expression of E2F also abolished the serum-stimulated regulation of the DHFR promoter and resulted in transcription patterns similar to those seen with expression of the adenoviral oncoprotein E1A. In summary, we provide evidence for the importance of E2F in the growth regulation of DHFR and suggest that alterations in the levels of E2F may have severe consequences in the control of cellular proliferation.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Jan Wisniewski ◽  
Bassam Hajj ◽  
Jiji Chen ◽  
Gaku Mizuguchi ◽  
Hua Xiao ◽  
...  

The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.


2001 ◽  
Vol 21 (17) ◽  
pp. 5723-5732 ◽  
Author(s):  
Heather H. Shih ◽  
Mei Xiu ◽  
Stephen P. Berasi ◽  
Ellen M. Sampson ◽  
Andrew Leiter ◽  
...  

ABSTRACT We previously isolated HBP1 as a target of the retinoblastoma (RB) and p130 family members and as the first of the HMG box transcriptional repressors. Our subsequent work demonstrated that HBP1 coordinates differentiation in cell culture models. In the present study, we show that HBP1 regulates proliferation in a differentiated tissue of an animal. Using transgenic mice in which HBP1 expression was specifically increased in hepatocytes under control of the transthyretin promoter, we determined the impact of HBP1 on synchronous cell cycle reentry following partial hepatectomy. Modest overexpression of HBP1 yielded a detectable cell cycle phenotype. Following a mitogenic stimulus induced by two-thirds partial hepatectomy, mice expressing the HBP1 transgene showed a 10- to 12-h delay in progression through G1 to the peak of S phase. There was a concomitant delay in mid-G1events, such as the induction of cyclin E. While the delay in G1 and S phases correlated with the slight overexpression of transgenic HBP1, the level of the endogenous HBP1 protein itself declined in S phase. In contrast, the onset of the immediate-early response following partial hepatectomy was unchanged in HBP1 transgenic mice. This observation indicated that the observed delay in S phase did not result from changes in signaling pathways leading into the G0-to-G1 transition. Finally, transgenic mice expressing a mutant HBP1 lacking the N-terminal RB interacting domain showed a stronger S-phase response following partial hepatectomy. These results provide the first evidence that HBP1 can regulate cell cycle progression in differentiated tissues.


1995 ◽  
Vol 15 (6) ◽  
pp. 3301-3309 ◽  
Author(s):  
C Desdouets ◽  
G Matesic ◽  
C A Molina ◽  
N S Foulkes ◽  
P Sassone-Corsi ◽  
...  

Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated. We have investigated the role of the cyclic AMP (cAMP)-dependent signalling pathway in this cell cycle-dependent control. In human diploid fibroblasts (Hs 27), induction of cyclin A gene expression at G1/S is stimulated by 8-bromo-cAMP and suppressed by the protein kinase A inhibitor H89, which was found to delay S phase entry. Transfection experiments showed that the cyclin A promoter is inducible by activation of the adenylyl cyclase signalling pathway. Stimulation is mediated predominantly via a cAMP response element (CRE) located at positions -80 to -73 with respect to the transcription initiation site and is able to bind CRE-binding proteins and CRE modulators. Moreover, activation by phosphorylation of the activators CRE-binding proteins and CRE modulator tau and levels of the inducible cAMP early repressor are cell cycle regulated, which is consistent with the pattern of cyclin A inducibility by cAMP during the cell cycle. These results suggest that the CRE is, at least partly, implicated in stimulation of cyclin A transcription at G1/S.


2019 ◽  
Author(s):  
Yilei Cui ◽  
Xiaoning Yu ◽  
Xin Zhang ◽  
Yelei Tang ◽  
Xiajing Tang ◽  
...  

Abstract Background: The insulin-like growth factor 1 receptor (IGF1R) gene is essential for lens development, but the impact of IGF1R on age-related cataract(ARC) has not been investigated. This study explored the association between IGF1R single nucleotide polymorphism (SNP) and ARC susceptibility ,and uncover the underlying mechanism in human lens epithelial (HLE) cells. Methods:A total of 1190 unrelated participants ,comprising 690 ARC patients and 550 healthy individuals in Han Chinese population were recruited and genotyped for target SNP. The X2-test was used to detect genotypic distribution between the patient and control groups and the logistic regression was performed to adjust the age and gender. Meanwhile, in the IGF1R knockdown HLE cells, cell proliferation was detected via CCK-8 analysis. Cell cycle and apoptosis were evaluated by flow cytometry,while the expression of cycle- and apoptosis-related molecules were determined via Q-PCR and Western blot. The Caspase-3 activity was measured using its assay kit. Results: The rs1546713 in IGF1R gene was identified(P =0.046,OR:1.606,CI:1.245,2.071),which shown a significant relevance with ARC risk under the dominant model. The results demonstrated that IGF1R knockdown inhibited cell proliferation by inducing cell cycle arrest at S phase and promoting apoptosis. Mechanistically, the cell cycle blocked at S phase was linked with the alterations of cyclinA , cyclinB, cyclinE and P21,while the pro-apoptosis function was related to stimulate the activation of Caspase-3 activities and the alteration of Caspase-3,Bcl-2 and Bax expression levels. Conclusions: This study first reported that IGF1R polymorphisms may affect susceptibility to ARCs in Han Chinese population and provided new clues to understanding the pathogenic mechanism of ARCs. Notably, IGF1R is likely a potential target for ARC prevention and treatment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1244-1244
Author(s):  
Kathrin Krowiorz ◽  
Razan Jammal ◽  
Stephan Emmrich ◽  
Arefeh Rouhi ◽  
Michael Heuser ◽  
...  

Abstract MicroRNAs (miRNAs) are essential for maintenance and differentiation of normal hematopoietic cells and their dysregulation is strongly implicated in leukemias. In order to identify tumor suppressor miRNAs in the context of hematological malignancies, we performed two complementary miRNA expression screenings in normal hematopoiesis as well as in childhood and adult acute myeloid leukemias (AML). We reasoned that tumor suppressor miRNAs are upregulated in mature myeloid cells, as compared to normal hematopoietic stem and progenitor cells (HSPCs), and downregulated in AML. Based on this screening strategy, we identified the miR-193 family members as potent suppressors of HSPC activity and AML growth. During normal hematopoiesis mmu-miR-193a-3p is exclusively expressed in mature myeloid cells and absent in normal HSPCs. Accordingly, in a cohort of 165 pediatric AML patients hsa-miR-193b-3p was broadly repressed throughout the cytogenetically characterized subgroups. In addition, in a cohort of 43 adult AML patients, its homolog hsa-miR-193a-3p was significantly upregulated in APL cases (p=0.0025, n=7) compared to bone marrow from healthy donors (n=5). To assess the impact of the miR-193 family members on AML maintenance and development, we lentivirally expressed miR-193a/b in the MLL-rearranged cell lines ML2 and THP1, which induced monocytic differentiation in concert with calcitriol treatment, measured by CD11b/CD14 expression (p=0.024). Consistently, enforced miR-193-expression led to a significant growth disadvantage in ML2 and THP1 cells (p=<0.001 and p=0.02, respectively) as well as to reduced colony formation (p=0.008) in methylcellulose-based colony-forming unit (CFU) assays. Noteworthy, these effects were not restricted to MLL-rearranged AML cell lines only, but were also evident in six other AML cell lines representing the most common AML subgroups, such as t(8;21) and t(15;17). Beyond the growth-suppressive and differentiation-inductive effect of miR-193 in human AML cell lines, overexpression of miR-193a caused a significant decrease of proliferation in murine bone marrow cells immortalized in vitro by retroviral expression of Hoxa9 or Hoxa9 and Meis1 (p=0.019 and p=0.008, respectively). Based on these findings in AML, we further investigated the impact of the miR-193 family on normal hematopoiesis. We retrovirally expressed miR-193a in 32D cells treated with granulocyte-colony stimulating factor (G-CSF), which resulted in a strong induction of myeloid differentiation already after day 2 (p=0.006) as assessed by CD11b/Gr-1 surface marker expression. We lentivirally transduced mouse lineage negative (Lin-) HSPCs and transplanted them into irradiated isogenic recipients. Bleedings performed on weeks 4, 8 and 11, as well as the examination of the bone marrow on week 11, showed a severe competitive disadvantage of miR-193-transduced cells (week 11: 2% GFP+ miR-193- vs. 25% GFP+ miR-NSC-transduced cells). These results were further refined using highly purified ESLAM (CD45+ EPCR+ CD48− CD150+) HSCs which failed to reconstitute hematopoiesis when overexpressing miR-193a, indicated by the absence of miR-193a/GFP+ cells at week 8 post transplantation. These observations might be explained by a potent G1 cell cycle arrest in HSPCs when overexpressing miR-193a/b (4-fold decrease in the S phase population) and induction of apoptosis. Our results in normal and malignant hematopoiesis suggested that the miR-193 family acts globally through targeting relevant stem cell pathways. To validate this hypothesis we quantified the knockdown of ten predicted miR-193 target genes. qRT-PCR analysis confirmed the down regulation of KIT, KRAS, SOS2 (key components of the MAPK signaling pathway) and CCND1, a CDK regulator of G1/S phase transition. We propose a dual regulatory platform where firstly, miR-193 targets CCND1 and controls the cell cycle kinetics of stem cells. Secondly, miR-193 interferes with the KIT proto-oncogene and the RAS pathway thereby inhibiting crucial pro-proliferation and anti-apoptotic signaling cascades. Taken together, we identified the miR-193 family as a pan-tumor suppressor in childhood and adult AML. Its anti-leukemic effect is mediated by targeting the stem cell KIT/SOS2/RAS/RAF axis. Disclosures No relevant conflicts of interest to declare.


1993 ◽  
Vol 13 (3) ◽  
pp. 1610-1618
Author(s):  
J E Slansky ◽  
Y Li ◽  
W G Kaelin ◽  
P J Farnham

Enhanced expression of genes involved in nucleotide biosynthesis, such as dihydrofolate reductase (DHFR), is a hallmark of entrance into the DNA synthesis (S) phase of the mammalian cell cycle. To investigate the regulated expression of the DHFR gene, we stimulated serum-starved NIH 3T3 cells to synchronously reenter the cell cycle. Our previous results show that a cis-acting element at the site of DHFR transcription initiation is necessary for serum regulation. Recently, this element has been demonstrated to bind the cloned transcription factor E2F. In this study, we focused on the role of E2F in the growth regulation of DHFR. We demonstrated that a single E2F site, in the absence or presence of other promoter elements, was sufficient for growth-regulated promoter activity. Next, we showed that the increase in DHFR mRNA at the G1/S-phase boundary required protein synthesis, raising the possibility that a protein(s) lacking in serum-starved cells is required for DHFR transcription. We found that, similar to DHFR mRNA expression, levels of murine E2F1 mRNA were low in serum-starved cells and increased at the G1/S-phase boundary in a protein synthesis-dependent manner. Furthermore, in a cotransfection experiment, expression of human E2F1 stimulated the DHFR promoter 22-fold in serum-starved cells. We suggest that E2F1 may be the key protein required for DHFR transcription that is absent in serum-starved cells. Expression of E2F also abolished the serum-stimulated regulation of the DHFR promoter and resulted in transcription patterns similar to those seen with expression of the adenoviral oncoprotein E1A. In summary, we provide evidence for the importance of E2F in the growth regulation of DHFR and suggest that alterations in the levels of E2F may have severe consequences in the control of cellular proliferation.


2001 ◽  
Vol 21 (19) ◽  
pp. 6484-6494 ◽  
Author(s):  
Laurence Vandel ◽  
Estelle Nicolas ◽  
Olivier Vaute ◽  
Roger Ferreira ◽  
Slimane Ait-Si-Ali ◽  
...  

ABSTRACT The E2F transcription factor controls the cell cycle-dependent expression of many S-phase-specific genes. Transcriptional repression of these genes in G0 and at the beginning of G1by the retinoblasma protein Rb is crucial for the proper control of cell proliferation. Rb has been proposed to function, at least in part, through the recruitment of histone deacetylases. However, recent results indicate that other chromatin-modifying enzymes are likely to be involved. Here, we show that Rb also interacts with a histone methyltransferase, which specifically methylates K9 of histone H3. The results of coimmunoprecipitation experiments of endogenous or transfected proteins indicate that this histone methyltransferase is the recently described heterochromatin-associated protein Suv39H1. Interestingly, phosphorylation of Rb in vitro as well as in vivo abolished the Rb-Suv39H1 interaction. We also found that Suv39H1 and Rb cooperate to repress E2F activity and that Suv39H1 could be recruited to E2F1 through its interaction with Rb. Taken together, these data indicate that Suv39H1 is involved in transcriptional repression by Rb and suggest an unexpected link between E2F regulation and heterochromatin.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Ufuk Günesdogan ◽  
Herbert Jäckle ◽  
Alf Herzig

Eukaryotes package DNA into nucleosomes that contain a core of histone proteins. During DNA replication, nucleosomes are disrupted and re-assembled with newly synthesized histones and DNA. Despite much progress, it is still unclear why higher eukaryotes contain multiple core histone genes, how chromatin assembly is controlled, and how these processes are coordinated with cell cycle progression. We used a histone null mutation of Drosophila melanogaster to show that histone supply levels, provided by a defined number of transgenic histone genes, regulate the length of S phase during the cell cycle. Lack of de novo histone supply not only extends S phase, but also causes a cell cycle arrest during G2 phase, and thus prevents cells from entering mitosis. Our results suggest a novel cell cycle surveillance mechanism that monitors nucleosome assembly without involving the DNA repair pathways and exerts its effect via suppression of CDC25 phosphatase String expression.


2019 ◽  
Vol 116 (30) ◽  
pp. 14995-15000 ◽  
Author(s):  
Justyna Cholewa-Waclaw ◽  
Ruth Shah ◽  
Shaun Webb ◽  
Kashyap Chhatbar ◽  
Bernard Ramsahoye ◽  
...  

Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here, we integrate quantitative, multidimensional experimental analysis and mathematical modeling to indicate that MeCP2 is a global transcriptional regulator whose binding to DNA creates “slow sites” in gene bodies. We hypothesize that waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shockwaves in nonequilibrium physics transport models. This mechanism differs from conventional gene-regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings point to a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene-expression patterns are choreographed.


Sign in / Sign up

Export Citation Format

Share Document