scholarly journals Continuous 3D printing from one single droplet

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhichao Dong ◽  
Chuxin Li ◽  
Huifeng Du ◽  
Nicholas X. Fang ◽  
...  

Abstract 3D printing has become one of the most promising methods to construct delicate 3D structures. However, precision and material utilization efficiency are limited. Here, we propose a one-droplet 3D printing strategy to fabricate controllable 3D structures from a single droplet ascribing to the receding property of the three-phase contact line (TCL) of the resin droplet. The well-controlled dewetting force of liquid resin on the cured structure results in the minimization of liquid residue and the high wet and net material utilization efficiency in forming a droplet into a 3D structure. Additionally, extra curing induced protruding or stepped sidewalls under high printing speed, which require high UV intensity, can be prevented. The critical is the free contact surface property of the droplet system with the introduction of the receding TCL, which increased the inner droplet liquid circulation and reduces the adhesion properties among the liquid resin, cured resin, and resin vat.

2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maryna Gorlachova ◽  
Boris Mahltig

AbstractThe actual paper is related to adhesive properties of 3D objects printed on cotton textile fabrics. For practical applications of 3D prints in the textile sector, the adhesion of the printed object on the textile substrate is an important issue. In the current study, two different types of polymers are printed on cotton – polylactide acid (PLA) and polyamide 6.6 (Nylon). Altogether six cotton fabrics differing in structure, weight and thickness are evaluated. Also, the effect of washing and enzymatic desizing is investigated. For printing parameters, best results are gained for elevated process temperatures, intermediate printing speed and low Z-distance between printing head and substrate. Also, a textile treatment by washing and desizing can improve the adhesion of an afterwards applied 3D print. The presented results are quite useful for future developments of 3D printing applications on textile substrates, e.g. to implement new decorative features or protective functions.


Author(s):  
Hriday K. Basak ◽  
Soumen Saha ◽  
Joydeep Ghosh ◽  
Uttam Paswan ◽  
Sujoy Karmakar ◽  
...  

Background: Treatment of the Covid-19 pandemic caused by the highly contagious and pathogenic SARS-CoV-2 is a global menace. Day by day this pandemic is getting worse. Doctors, Scientists and Researchers across the world are urgently scrambling for a cure for novel corona virus and continuously working at break neck speed to develop vaccine or drugs. But to date, there are no specific drugs or vaccine available in the market to cope up the virus. Objective: The present study helps us to elucidate 3D structures of SARS-CoV-2 proteins and also to identify best natural compounds as potential inhibitors against COVID-19. Methods: The 3D structures of the proteins were constructed using Modeller 9.16 modeling tool. Modelled proteins were validated with PROCHECK by Ramachandran plot analysis. In this study a small library of natural compounds (fifty compounds) was docked to the ACE2 binding site of the modelled surface glycoprotein of SARS-CoV-2 using Auto Dock Vina to repurpose these inhibitors for SARS-CoV-2. Conceptual density functional theory calculations of best eight compounds had been performed by Gaussian-09. Geometry optimizations for these molecules were done at M06-2X/ def2-TZVP level of theory. ADME parameters, pharmacokinetic properties and drug likeliness of the compounds were analyzed in the swissADME website. Results: In this study we analysed the sequences of surface glycoprotein, nucleocapsid phosphoprotein and envelope protein obtained from different parts of the globe. We have modelled all the different sequences of surface glycoprotein and envelop protein in order to derive 3D structure of a molecular target which is essential for the development of therapeutics. Different electronic properties of the inhibitors have been calculated using DFT through M06-2X functional with def2-TZVP basis set. Docking result at the hACE2 binding site of all modelled surface glycoproteins of SARS-CoV-2 showed that all the eight inhibitors (Actinomycin D, avellanin C, ichangin, kanglemycin A, obacunone, ursolic acid, ansamiotocin P-3 and isomitomycin A) studied here many folds better compared to hydroxychloroquine which has been found to be effective to treat patients suffering fromCOVID-19 pandemic. All the inhibitors meet most of criteria of drug likeness assessment. Conclusion: We will expect that eight compounds (Actinomycin D, avellanin C, ichangin, kanglemycin A, obacunone, ursolic acid, ansamiotocin P-3 and isomitomycin A) can be used as potential inhibitors against SARS-CoV-2.


2019 ◽  
Author(s):  
◽  
Jheng-Wun Su

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Learning from nature livings, especially those that can respond to the stimuli and change the shape, is attracting increasing interests in a wide variety of research fields. There is a significant need of developing synthetic materials that can mimic these living systems to show dynamic and adaptive shape-changing functions. Although various fabrication methods including molding, micro-fabrication and photolithography have been developed to fabricate the dynamic materials, they all have shown some limits. At present, 3D printing is a promising technique, which provides a cost effective, accurate and customized method to form 3D structures. The recently new emerging technique, 4D printing, which employs the 3D printing to print the active materials for dynamic 3D structures, shows a great potential for various applications such as tissue engineering, flexible electronics, and soft robotics. Despite much recent progress, this technology and its application in 3D dynamic structure fabrication is still in its infancy. My Ph.D. dissertation focuses on 4D printing of programmable polymeric materials that exhibits complex, reversible, shape transformations as well as enriching the printable material library by exploring various active materials for 4D printing technology. Chapter 1 introduces the current development of active materials and methodologies. Much attention is paid to the recent progress and its merits and demerits. Chapter 2 presents a simple and inexpensive 4D printing of waterborne polyurethane paint (PU) composites that are fabricated by mixing PU with micro-size preswollen carboxymethyl cellulose (CMC) and silicon oxide nanoparticle (NPs), respectively. Chapter 3 presents the 4D printing of a commercial polymer, SU-8, which has yet been reported in this field. The self-morphing behaviors of the printed SU-8 structures are induced by spatial control of swelling medium inside the SU-8 matrix. In Chapter 4, machine learning algorithms are applied to evaluate the shape-morphing behaviors of 4D printed objects. After the model optimization by tuning the hyperparameters the obtained machine learning models enable to accurately predict the final curvatures and curving angles of the 4D printed SU-8 structures from given input geometrical information. This initial success show that these data-driven surrogate models can well circumvent the challenge of human centered trial-and-error process in optimizing the printed structures, thereby pushing the research in 4D printing to a new height.


2020 ◽  
Vol 394 (1) ◽  
pp. 1900190
Author(s):  
Franco Leonardo Redondo ◽  
María Carolina Giaroli ◽  
Marcelo Armando Villar ◽  
Augusto Gonzaga Oliveira Freitas ◽  
Andrés Eduardo Ciolino ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 147 ◽  
Author(s):  
Prakash Kulkarni ◽  
Vladimir Uversky

It is now increasingly evident that a large fraction of the human proteome comprises proteins that, under physiological conditions, lack fixed, ordered 3D structures as a whole or have segments that are not likely to form a defined 3D structure [...]


2020 ◽  
Author(s):  
Carlos Soto ◽  
Darshan Bryner ◽  
Nicola Neretti ◽  
Anuj Srivastava

AbstractThe study of the 3-dimensional (3D) structure of chromosomes – the largest macromolecules in biology – is one of the most challenging to date in structural biology. Here, we develop a novel representation of chromosomes, as sequences of shape letters from a finite shape alphabet, which provides a compact and efficient way to analyze ensembles of chromosome shape data, akin to the analysis of texts in a language by using letters. We construct a Chromosome Shape Alphabet (CSA) from an ensemble of chromosome 3D structures inferred from Hi-C data – via SIMBA3D or other methods – by segmenting curves based on topologically associating domains (TADs) boundaries, and by clustering all TADs’ 3D structures into groups of similar shapes. The median shapes of these groups, with some pruning and processing, form the Chromosome Shape Letters (CSLs) of the alphabet. We provide a proof-of-concept for these CSLs by reconstructing independent test curves using only CSLs (and corresponding transformations) and comparing these reconstructions with the original curves. Finally, we demonstrate how CSLs can be used to summarize the variability of shapes in an ensemble of chromosome 3D structures using generalized sequence logos.


2019 ◽  
Vol 20 (17) ◽  
pp. 4116 ◽  
Author(s):  
Jun Wang ◽  
Jian Wang ◽  
Yanzhao Huang ◽  
Yi Xiao

3D structures of RNAs are the basis for understanding their biological functions. However, experimentally solved RNA 3D structures are very limited in comparison with known RNA sequences up to now. Therefore, many computational methods have been proposed to solve this problem, including our 3dRNA. In recent years, 3dRNA has been greatly improved by adding several important features, including structure sampling, structure ranking and structure optimization under residue-residue restraints. Particularly, the optimization procedure with restraints enables 3dRNA to treat pseudoknots in a new way. These new features of 3dRNA can greatly promote its performance and have been integrated into the 3dRNA v2.0 web server. Here we introduce these new features in the 3dRNA v2.0 web server for the users.


2019 ◽  
Vol 54 (22) ◽  
pp. 13901-13913 ◽  
Author(s):  
Ana Maria Mocioiu ◽  
Raluca Tutuianu ◽  
Laura Madalina Cursaru ◽  
Roxana Mioara Piticescu ◽  
Paul Stanciu ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3305
Author(s):  
Pablo Kraemer Fernandez ◽  
Alexey Unkovskiy ◽  
Viola Benkendorff ◽  
Andrea Klink ◽  
Sebastian Spintzyk

(1) Background: To date, no information on the polishability of milled and 3D-printed complete denture bases has been provided, which is relevant in terms of plaque accumulation. (2) Methods: three groups (n = 30) were manufactured using the cold-polymerization polymethilmethacrilate, milling (SM) and 3D printing (AM). 10 specimens of each group were left untreated (reference). 10 more specimens were pre-polished (intermediate polishing) and 10 final specimens were highgloss polished. An additional 20 specimens were 3D printed and coated with the liquid resin (coated), 10 of which were additionally polished (coated + polished). For each group Ra and Rz values, gloss value and REM images were obtained. (3). The “highgloss-polished” specimens showed statistically lower Ra and Rz values in the SM, followed by AM and conventional groups. In the AM group statistically lower surfaces roughness was revealed for highgloss-polished, “coated + polished”, and “coated” specimens, respectively. (4) Conclusions: The milled specimens demonstrated superiors surface characteristics than 3D printed and conventionally produced after polishing. The polished specimens demonstrated superior surface characteristics over coated specimens. However, the surface roughness by both polished and coated specimens was within the clinically relevant threshold of 0.2 µm.


Author(s):  
ZOZIMUS DIVYA LOBO C ◽  
SYED MOHAMED A ◽  
GNANENDRA SHANMUGAM

Objective: The objective of this study was to investigate the antihypertensive activity of heterocyclic compounds against angiotensin-converting enzyme (ACE) through molecular docking studies. Methods: The X-ray crystal three-dimensional (3D) structure of human ACE complexed with lisinopril (PDB ID: 1O86) was retrieved from protein databank. The two-dimensional structures of 10 selected heterocyclic compounds were drawn in ACD-Chemsketch and converted into 3D structures. The 3D structures of compounds were virtually screened in the binding pockets of ACE using FlexX docking program. Further, the chemical entities revealing the molecular electronic structures of the best docked compound (Compound-4) were explored through density functional theory studies. Results: The Compound-4 showed the highest docking score of −26.6290 kJ/mol with ACE. The Hbond and non-bonded interactions are favored by phenylalanine, leucine, and arginine. The energy gap of 1.60 eV between highest occupied molecular orbital and lowest unoccupied molecular orbitals explained the presence of strong electron-acceptor group. Furthermore, the molecular electrostatic potential studies clearly envisaged the requirement of electropositive and electronegative groups are crucial for the ACE inhibitor activities. Conclusion: The identification of good ACE inhibitors requires the understanding of the current ACE inhibitors. Thus, the docking interactions of Compound-4 and its molecular electronic structure significantly imply its potential as antihypertensive agent. However, further clinical studies are required to ascertain its potential toxic effects.


Sign in / Sign up

Export Citation Format

Share Document