scholarly journals Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Audrey Chu ◽  
Charlie Gréboval ◽  
Yoann Prado ◽  
Hicham Majjad ◽  
Christophe Delerue ◽  
...  

AbstractNarrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the scaling of the noise with the active volume of the film, make case for device size reduction. Here, with two steps of optical lithography we design a nanotrench which effective channel length corresponds to 5–10 nanocrystals, matching the carrier diffusion length. We demonstrate responsivity as high as 1 kA W−1, which is 105 times higher than for conventional µm-scale channel length. In this work the associated specific detectivity exceeds 1012 Jones for 2.5 µm peak detection under 1 V at 200 K and 1 kHz, while the time response is as short as 20 µs, making this performance the highest reported for HgTe NC-based extended short-wave infrared detection.

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Andrea Ravagli ◽  
Christopher Craig ◽  
John Lincoln ◽  
Daniel W. Hewak

AbstractChalcogenide glasses are emerging as important enabling materials for low-cost infrared imaging by virtue of their transparency in the key short-wave infrared (SWIR) to long-wave infrared (LWIR) bands and the ability to be mass produced and molded into near-net shape lenses. In this paper, we introduce a new family of chalcogenide glasses, which offer visible as well as infrared transmission and improved thermal and mechanical properties. These glasses are based on Ga


1995 ◽  
Vol 42 (8) ◽  
pp. 1461-1466 ◽  
Author(s):  
Soonwon Hong ◽  
Kwyro Lee

Author(s):  
Julio Manuel de Luis-Ruiz ◽  
Javier Sedano-Cibrián ◽  
Rubén Pérez-Álvarez ◽  
Raúl Pereda-García ◽  
Beatriz Malagón-Picón

2018 ◽  
Author(s):  
Pedro Veras Guimarães ◽  
Fabrice Ardhuin ◽  
Peter Sutherland ◽  
Mickael Accensi ◽  
Michel Hamon ◽  
...  

Abstract. Global Navigation Satellite Systems (GNSS) and modern motion-sensor packages allow the measurement of ocean surface waves with low-cost drifters. Drifting along or across current gradients provides unique measurements of wave-current interactions. In this study, we investigate the response of several combinations of GNSS receiver, motion-sensor package and hull design in order to define a prototype surface kinematic buoy (SKIB) that is particularly optimized for measuring wave-current interactions, including relatively short wave components (relative frequency around 1 Hz) that are important for air-sea interactions and remote sensing applications. The comparison with existing Datawell Directional Waverider and SWIFT buoys, as well as stereo-video imagery demonstrates the accuracy of SKIB. The use of low-cost accelerometers and a spherical ribbed and skirted hull design provide acceptable heave spectra, while velocity estimates from GNSS receivers yield a mean direction and directional spread. Using a low-power acquisition board allows autonomous deployments over several months with data transmitted by satellite. The capability to measure current-induced wave variations is illustrated with data acquired in a macro-tidal coastal environment.


2018 ◽  
Vol 10 (1) ◽  
pp. 532-543 ◽  
Author(s):  
Min Yang ◽  
Lei Kang ◽  
Huaqing Chen ◽  
Min Zhou ◽  
Jianghua Zhang

Abstract The East Tianshan Mountain is one of the most important gold ore forming zones in northwestern China and central Asia. The Chinese GaoFen-1 (GF-1), the first Chinese high resolution satellite, is characterized by its 2-m resolution PAN data. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the well-known earth observation satellite, is advanced by its finer spectral resolution owing 9 bands in the visible and near infrared (VNIR) to the short-wave infrared (SWIR) region. In this study, we fused the GF-1 PAN and the ASTER multispectral data using the well-known Gram-Schmidt Pan Sharpening (G-S) method to produce a new data with both high spatial and spectral resolution. Then different lithological units were mapped respectively using the fusion data, the ASTER data and the WorldView-3 data by support vector machine (SVM) method. In order to assess this fusion data, a comparison work was executed among the three mapping results. The comparison work indicated that lithological classification using the new fusion data is an efficient, robust and low cost method, and it could replace the WV-3 data in some large sale geological work.


Sign in / Sign up

Export Citation Format

Share Document