scholarly journals Engineering new limits to magnetostriction through metastability in iron-gallium alloys

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
P. B. Meisenheimer ◽  
R. A. Steinhardt ◽  
S. H. Sung ◽  
L. D. Williams ◽  
S. Zhuang ◽  
...  

AbstractMagnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe1−xGax alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe1−xGax alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe1−xGax − [Pb(Mg1/3Nb2/3)O3]0.7−[PbTiO3]0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10−5 s m−1. When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 708
Author(s):  
Żaneta Binert-Kusztal ◽  
Małgorzata Starek ◽  
Joanna Żandarek ◽  
Monika Dąbrowska

Currently, there is still a need for broad-spectrum antibiotics. The new cephalosporin antibiotics include, among others, ceftobiprole, a fifth-generation gram-positive cephalosporin, active against Staphylococcus aureus methicillin agonist (MRSA). The main focus of the work was to optimize the conditions of ceftobiprole qualitative determination and to validate the developed procedure according to ICH guidelines. As a result of the optimization process, HPTLC Cellulose chromatographic plates as a stationary phase and a mixture consisting of ethanol:2-propanol: glacial acetic acid: water (4:4:1:3, v/v/v/v) as a mobile phase were chosen. The densitometric detection was carried out at maximum absorbance of ceftobiprole (λ = 232 nm). Next, the validation process of the developed procedure was carried out. The relative standard deviation (RSD) for precision was less than 1.65%, which proves the high compatibility of the results, as well as the LOD = 0.0257 µg/spot and LOQ = 0.0779 µg/spot values, which also confirm the high sensitivity of the procedure. The usefulness of the developed method for the stability studies of ceftobiprole was analyzed. Study was carried out under stress conditions, i.e., acid and alkaline environments, exposure to radiation imitating sunlight and high temperature (40–60 °C). It was found that cefotbiprole is unstable in an alkaline environment and during exposure to UV-VIS radiation. Moreover, the lipophilicity parameter, as a main physicochemical property of the biologically active compound, was determined using experimental and computational methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kwabena Sarpong ◽  
Bhaskar Datta

The binding affinity and specificity of nucleic acid aptamers have made them valuable candidates for use as sensors in diagnostic applications. In particular, chromophore-functionalized aptamers offer a relatively simple format for detection and quantification of target molecules. We describe the use of nucleic-acid-staining reagents as an effective tool for detecting and signaling aptamer-target interactions. Aptamers varying in size and structure and targeting a range of molecules have been used in conjunction with commercially available chromophores to indicate and quantify the presence of cognate targets with high sensitivity and selectivity. Our assay precludes the covalent modification of nucleic acids and relies on the differential fluorescence signal of chromophores when complexed with aptamers with or without their cognate target. We also evaluate factors that are critical for the stability of the complex between the aptamer and chromophore in presence or absence of target molecules. Our results indicate the possibility of controlling those factors to enhance the sensitivity of target detection by the aptamers used in such assays.


RSC Advances ◽  
2018 ◽  
Vol 8 (69) ◽  
pp. 39296-39306 ◽  
Author(s):  
Gibin George ◽  
Machael D. Simpson ◽  
Bhoj R. Gautam ◽  
Dong Fang ◽  
Jinfang Peng ◽  
...  

The decay time of BaGeF6 nanowires codoped with rare earths is found in the order of subnanoseconds, being one of the shortest decay time records from inorganic scintillators. Their luminescence emissions are highly sensitive for H2O2 detection.


2013 ◽  
Vol 823 ◽  
pp. 291-295 ◽  
Author(s):  
Shou Chen Chai ◽  
Peng Yang ◽  
Cheng Jia Yang ◽  
Chun Li Cai ◽  
Na Yu

In the space restricted airtight environment that people lives in, detecting harmful gas by miniature gas chromatography is the practical requirement at present, however, PIDs performance is key factor that restrict the application of miniature gas chromatography, the redesign of the detectors gas route in this paper aiming at improve detectors stability observably, and schemed out miniature PID with high sensitivity, low detection limit and fast response. The result of the experiment shows that the detection limit is 0.04ppm, the sensitivity is 101mv/ppm,the stability is 0.04×10-6/24h,meeting the project requirement. Keywords: photoionization detector; ionization chamber; sensitivity; detection limit;


2021 ◽  
Author(s):  
Karl Toland ◽  
Abhinav Prasad ◽  
Andreas Noack ◽  
Kristian Anastasiou ◽  
Richard Middlemiss ◽  
...  

<p>The manufacture and production of a high-sensitivity cost-effective gravimeter has the potential to change the methodology and efficiency of gravity measurements. Currently, the most common method to conduct a survey is by using a single gravimeter, usually costing tens of thousands of Dollars, with measurements taken at multiple locations to obtain the required data. The availability of a cost-effective gravimeter however would allow the user to install multiple gravimeters, at the same cost of a single gravimeter, to increase the efficiency of surveys and long-term monitoring.  </p><p> </p><p>Since the previous reporting on a low-drift relative MEMS gravimeter for multi-pixel imaging applications (Prasad, A. et al, EGU2020-18528), significant progress has been made in the development and assembly of the previously reported system. Field prototypes have been manufactured and undergone significant testing to investigate the stability and robustness of the system in preparation for the deployment of multiple devices as part of the gravity imager on Mount Etna. The device, known as Wee-g, has several key features which makes it an attractive prospect in the field of gravimetry. Examples of these features are that the Wee-g is small and portable with the ability to connect to the device remotely, can be powered through a mains connected power supply, or through portable batteries, weighs under 4kg, has a low power consumption during normal use of 5W, correct for tilt through manual adjustments or remotely through integrated stepper motors with a total tilt correction range of 5 degrees, the ability to read out tilt of the device through an inclinometer for either alignment or long term monitoring and numerous temperature sensors and heater servos to control the temperature of the MEMS to <1mK.</p><p> </p><p>This presentation aims to report on the progress that has been achieved in the development and manufacturing of the prototype devices, various testing of the devices under various laboratory conditions (such as the measurements of the Earth tides, and a relative measurement of gravity at various floor levels), as well as additional applications that are to be explored in 2021. </p>


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 717 ◽  
Author(s):  
Xin Cheng ◽  
Yi Liu ◽  
Changyuan Yu

This paper presents a high sensitivity gas pressure sensor with benzyl-dimethylketal (BDK)-doped polymer optical fiber Bragg grating (POFBG), whose sensitivity is up to 8.12 pm/kPa and 12.12 pm/kPa in positive and negative pressure atmosphere, respectively. The high sensitivity can be explained by its porous chemical structure. The stability and response behavior under air pressure atmosphere has also been investigated. The new understanding of the air pressure response principle and sensitivity difference for the presented sensor can be a worthy reference.


Sign in / Sign up

Export Citation Format

Share Document